

Report on Geotechnical, Preliminary Site Investigation (Contamination) and Salinity Investigation

North Shearwater Residential Subdivision, Stage 1 Viney Creek Road, Tea Gardens

Prepared for Wolin Investments Pty Ltd

Project 81259.01 May 2018

Document History

Document details

Project No.	81259.01	Document No.	R.001.Rev0			
Document title	Report on Geotechnical, Preliminary Site Investigation (Contamination)					
	and Salinity Inve	and Salinity Investigation				
	North Shearwater Residential Subdivision, Stage 1					
Site address	Viney Creek Roa	ad, Tea Gardens				
Report prepared for	Wolin Investments Pty Ltd					
File name	81259.01.R.001.Rev0					

Document status and review

Status	Prepared by	Reviewed by	Date issued
Revision 0	Joel Cowan/Patrick Heads	John Harvey/Chris Bozinovski	4 May 2018

Distribution of copies

Status	Electronic	Paper	Issued to
Revision 0	1	0	Andrew Osbourne, Wolin Investments Pty Ltd
Revision 0	1	0	Adrian Varela, Tattersall Lander Pty Ltd

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

Signature	Date
Author	4 May 2018
Reviewer	4 May 2018

Table of Contents

		Page
1.	Introduction	1
2.	Site Identification	3
3.	Geology and Hydrogeology	3
4.	Background	4
	4.1 Introduction	
	4.2 Coffey Geotechnics – Preliminary Environmental Site Assessme	ent (Ref 3)4
	4.3 Coffey Geotechnics – Geotechnical Assessment (Ref 4)	5
5.	Site History Review	5
	5.1 Introduction	5
	5.2 Historical Aerial Photos	5
	5.3 Discussion with Site Personnel	6
6.	Site Description	6
7.	Potential Contaminants	10
8.	Conceptual Site Model	11
9.	Field Work Methods	13
10.	. Field Work Results	15
	10.1 Subsurface Conditions	15
	10.2 Contaminant Observations	18
	10.3 Surface Water Testing	18
11.	. Laboratory Testing	19
	11.1 Geotechnical	19
	11.2 Contamination	22
	11.3 Salinity 26	
12.	. Site Assessment Criteria - Contamination	28
	12.1 Introduction	28
	12.2 Health Investigation and Screening Levels	28
	12.3 Ecological Investigation Levels	30
	12.4 Ecological Screening Levels	
	12.5 Management Limits	
	12.6 Waste Classification	32
13.	Proposed Development	32

14.	Com	ments	33
	14.1	Geotechnical	33
		14.1.1 Slope Stability	33
		14.1.2 Identified Hazards and Inferred Consequences	
		14.1.3 Risk to Property	
		14.1.4 Mine Subsidence	
		14.1.5 Sediment Basins	
		14.1.6 Site Classification	
		14.1.7 Footings	
		14.1.9 Retaining Walls	
		14.1.10 Suitability of Reuse of Onsite Materials	
		14.1.11 Lot Fill / Existing Dam	
	14.2	Contamination	46
		14.2.1 Assessment of Contamination	46
	14.3	Salinity 47	
15.	Limita	ations	49
Appe	endix A	: CSIRO – BTF 18	
		Good Hillside Construction Practice – LR8	
		About this Report	
		Sampling Methods	
		Soil Descriptions	
		Rock Descriptions	
		Symbols and Abbreviations	
Appe	endix B	Test Pit Logs (TP01 to TP24, TP24A, TP25 to TP29, TP31 to TP43)	
		Test Pit Logs (Pits 101 to 107)	
		Dynamic Penetrometer Test Results	
Appe	endix C	: Laboratory Test Results	
Appendix D:		Quality Assurance / Quality Control Report	
		Chain of Custody Sheets (Field and Despatch)	
		Sample Receipts	
Appe	endix E	: Drawing 1 – Test Location Plan	
		Drawing 2 – Roadway Designation	

Report on Geotechnical, Preliminary Site Investigation (Contamination) and Salinity Investigation

North Shearwater Residential Subdivision, Stage 1

Viney Creek Road, Tea Gardens

1. Introduction

This revised report presents the results of a geotechnical, preliminary site investigation (contamination) and salinity investigation undertaken for Stage 1 of the North Shearwater Residential Subdivision at Viney Creek Road, Tea Gardens. The investigation was commissioned via a signed services order dated 15 February 2018 by Andrew Osbourne of Wolin Investments Pty Ltd and was undertaken in accordance with Douglas Partners' proposal NCL180017 dated 22 January 2018.

Douglas Partners Pty Ltd (DP) has undertaken a previous assessment for Stage 1 in 2013 (Ref 1). It is understood that the layout for Stage 1 has changed since the previous report and it is now understood that Stage 1 includes the following:

- 153 lots (previously 83 lots);
- Approximately 2,700 m of internal roadways (previously 1,600 m).

The aim of the investigation was to assess the subsurface soil conditions across the proposed Stage 1 site area in order to provide:

- Geotechnical assessment, providing comments on the following:
 - o Slope instability;
 - o Mine subsidence:
 - o Erosion potential;
 - o Earthworks preparation measures including temporary and permanent batter stability;
 - o Soil and water management (in conjunction with salinity investigation);
 - o Embankments for sediment basins;
 - o Soil characteristics for permanent basins including batter stability and soil permeability;
 - o Site classification in accordance with AS2870-2011;
 - o Footing options and hillside design;
 - o Pavement thickness design in accordance with local council guidelines and Austroads;
 - o Retaining wall parameters in ultimate stress parameters in accordance with AS4678-2002;
 - o Depth to rock (if encountered);
 - o Suitability of reuse of onsite materials in pavement construction or general lot fill;
 - o Comments on de-silting and decommissioning existing dams.

- Preliminary Site Investigation for contamination (PSI) to support development application;
- Salinity assessment:
 - o General comments on soil and water management (in conjunction with geotechnical investigation);
 - o Soil permeability (in conjunction with geotechnical investigation);
 - o Salinity management plan.

The original investigation included the excavation of 42 test pits and laboratory testing of selected samples. The current investigation included the excavation of 7 test pits within Stage 1 and laboratory testing of selected samples. The details of the field work are presented in this report, together with comments and recommendations on the issues listed above.

For the purpose of the investigation the client supplied the following drawings:

- "Overall Site Plan, Durness Station Residential Subdivision, Lot 2 DP 1154170, Viney Creek Road, North Shearwater", Rev A, Job No. 217416, dated 15/02/18 by Tattersall Lander Pty Ltd;
- "Central RU2 Area, Concept Layout Plan, Durness Station, Viney Creek Road, Tea Gardens", Rev A dated 15/02/18 by Tattersall Lander Pty Ltd;
- "Plan of Proposed Residential Subdivision, Stage 1 Detail Plan, Lot 2 DP1154170, Viney Creek Road, North Shearwater", Rev A, Job No. 217416, dated 15/02/18 by Tattersall Lander Ptv Ltd:
- "Plan of Proposed Residential Subdivision, Stage 1 Precinct Release Plan, Lot 2 DP1154170, Viney Creek Road, North Shearwater", Rev A, Job No. 217416, dated 15/02/18 by Tattersall Lander Pty Ltd;
- "Plan of Proposed Residential Subdivision, Stage 1 Layout Plan, Lot 2 DP1154170, Viney Creek Road, North Shearwater", Rev A, Job No. 217416, dated 15/02/18 by Tattersall Lander Pty Ltd;
- "Plan of Proposed Residential Subdivision, Lot 2 DP1154170, Viney Creek Road, North Shearwater", Rev A, Job No. 217416, dated 15/02/18 by Tattersall Lander Pty Ltd; and
- "Plan of Proposed Residential Subdivision, Stage 2 & 3 Layout Plan, Lot 2 DP1154170, Viney Creek Road, North Shearwater", Rev A, Job No. 217416, dated 15/02/18 by Tattersall Lander Pty Ltd.

The client also supplied an electronic copy of the site layout with site survey plan.

The scope of work for the current investigation also included an assessment of reports on the site previously undertaken by Coffey Geotechnics (refer Section 4).

The PSI was conducted with reference to the NSW EPA 'Guidelines for Consultants Reporting on Contaminated Sites' (Ref 2) and NEPM 2013 (Ref 5)

2. Site Identification

The site comprising Stage One of the North Sheawrwater residential subdivision is described as part of Lot 2, DP 1154170, Viney Creek Road, Tea Gardens, New South Wales. The approximate site extent is shown on Drawing 1 in Appendix E and in Figure 1 below.

Figure 1: Approximate extent of proposed Stage 1 development

The site is irregularly shaped and covers approximately 18 hectares. The site is bound to the west by Viney Creek Road, to the north by an unnamed private road, to the east by grazing land and to the south by existing large lot residential development. The site is located within the Mid Coast Council local government area.

3. Geology and Hydrogeology

Reference to the 1:250,000 NSW Geology sheet indicates that the site lies within the Carboniferous aged Wooton Beds which generally comprises mudstone and siltstone with interbeds of lithic sandstone and conglomerate and some limestone.

Groundwater is expected to flow to the east to south-east towards the Myall River which is approximately 1 km east-south-east of the site. Groundwater is expected to be at depths greater than 2 m based on site observations.

Reference to the NSW Natural Resources Atlas Dryland Salinity map indicates that there are no mapped dryland salinity occurrences or indicators on the site and that the site is not within a mapped salinity hazard area.

Reference to the NSW Acid Sulfate Soil Risk map for the area produced by the NSW Department of Land and Water Conservation indicates that the site is in an area mapped as having no known occurrence of acid sulfate soils.

4. Background

4.1 Introduction

Coffey Geotechnics has previously undertaken preliminary contamination and geotechnical investigations as part of the North Shearwater Land Capability Study in September 2008 (Project GEOTWARA20562AB, Refs 3 and 4). The area of investigation comprised the current site area (i.e. 'Stage 1') plus additional grazing and agricultural land, together with several building groups, to the east and south-east.

Sections of the previous reports relevant to the current site area are summarised in the following sections.

4.2 Coffey Geotechnics – Preliminary Environmental Site Assessment (Ref 3)

The scope of work for the preliminary environmental assessment included the following:

- Review of site history (historical aerial photos, review of Great Lakes Council and NSW EPA records and a historical title deeds search);
- Site visit;
- Identification of areas and chemicals of concern;
- Preparation of a report.

The findings of the assessment with respect to the current Stage 1 site area include the following:

- The site remained relatively unchanged between 1957 and 2008, with the exception of some vegetation clearing in the subject site area;
- There is a low potential for herbicide/pesticide contamination across the site due to chemical spraying;
- No areas of environmental concern were identified in the Stage 1 area.

4.3 Coffey Geotechnics – Geotechnical Assessment (Ref 4)

The scope of work for the geotechnical assessment included the following:

- Initial site visit and overall appraisal of site conditions;
- A broad subsurface investigation;
- Desktop study involving review of geological and topographical maps and aerial photographs, as well as reports on nearby sites held within Coffey archives.

The findings of the assessment with respect to the current Stage 1 site area, which is termed Terrain A, is that the area is suitable for development.

The report found that the soils in Stage 1 area were non-saline and no specific measures for management of urban salinity were required.

5. Site History Review

5.1 Introduction

The review of site history carried out by Douglas Partners for the current assessment of the Stage 1 site comprised the review of recent historical aerial photos, review of previous site history information (see Section 4.2 above) and brief discussions with site personnel regarding previous site use.

5.2 Historical Aerial Photos

The following recent historical aerial photos were reviewed to supplement the previous historical aerial photo review:

- May 2010;
- November 2010;
- April 2011;
- June 2011.
- April 2012;
- September 2013;
- October 2015; and
- July 2017.

The results of the review indicated the general absence of contaminating activities at the site. The site condition indicated by the aerial photos was similar to the condition at the time of the site walkover survey in March 2013. The site area was grassed and appeared to be used as grazing. It is noted that the stockpiled soils and rock observed in the south-eastern portion of the site (refer Section 6) was not observed in the aerial photos before April 2012.

5.3 Discussion with Site Personnel

Discussions with Mr Troy Wilton of Durness Station on 4 March 2013 indicated the following with regard to the site:

- The site has historically been used for grazing;
- Mr Wilton was not aware of the site being used for cropping;
- There are no known stock burial areas within the site:
- The soil and rock stockpiles located in the south-eastern portion of the site were sourced from nearby water pipeline construction works.

6. Site Description

The site is located on the eastern side of Viney Creek Road, Tea Gardens and forms Stage 1 of a larger residential subdivision, of which Stages 2 to 5 are situated to the east of the current site. Stage 1 is bounded to the south by a private unsealed access road and several residential properties; and to the east by dense stands of eucalyptus trees.

The topography of the site is dominated by two gullies, which converge approximately halfway along the southern boundary of the site (see

Figure 2), where culverts carry the water under the access road. The gullies generally fall towards the culvert to the south at approximately 5°. Side slopes on the ridges and gullies in the western and central portions of the site were approximately 5°.

Figure 2: Looking east across the site towards the convergence of the two main gullies (March 2013)

An area of relatively flat topography was observed in the eastern to south-eastern portion of the site. Site slopes on the eastern boundary fell to the east to north-east at slopes of approximately 10°. Moderately steep slopes were observed immediately east of the site (i.e. within the wooded area to the east of the proposed Stage 1 area).

The unsealed gravel road, observed within the site near its southern boundary, is shown in Figure 3 below.

Figure 3: Unsealed gravel road near to the southern site boundary, looking west. Rock outcrop in bottom left of figure (March 2013)

At the time of the investigation, the site was generally grassed. Some localised rock outcrop areas were observed on site during the investigation. A few of the rock outcrop areas are shown on Drawing 1 but not all such areas are shown. The surface also showed rock boulders/cobbles on or near the surface.

Approximately 70 dumped stockpiles of generally soil and rock were observed in the south-eastern portion of the site as shown in Figure 4 below. The material observed at the surface of the stockpiles comprised natural silty clay, gravel, cobbles and boulders. The stockpiles were up to approximately 1 m to 2 m in height and had a footprint of about 50 m by 30 m.

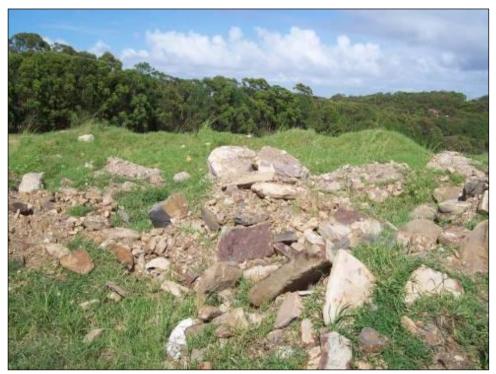


Figure 4: Stockpiled soil, gravel, cobbles and boulders in the south-eastern portion of the site (March 2013)

A dam was observed in the northern portion of the site as shown in Figure 5 below. Slopes of approximately 18° to 20° were observed on the dam embankment.

Figure 5: Dam in the northern portion of the site (March 2013)

Dam water was observed to be turbid, with no obvious indicators of gross contamination within the dam water.

Large lot residential development was observed immediately south of the site as shown in Figure 6 below.

Figure 6: Large lot residential development to the south of the site (March 2013)

7. Potential Contaminants

On the basis of the desktop review, available site history information and observations made during the previous and current site inspection, the following sources of potential contamination have been identified for the site:

- Agricultural activities on the site, including possible use of pesticides which may be a source of organochlorine and organophosphorus pesticides;
- Stockpiled imported filling in the south-eastern portion of the site. It is understood, however, that
 the observed stockpiled soil and rock was sourced from nearby trench excavations;
- The potential for runoff from upslope residences, which may be a source of hydrocarbon, heavy metal and pesticide contamination. It is understood that the adjacent sites operate on-site effluent disposal systems. The potential for microbiological contamination should be noted for the site as a result of runoff from upgradient effluent disposal areas, however the risk of gross contamination is considered to be low based on site topography and hydrogeological conditions.

The potential for gross contamination from the above potential contaminating activities is considered to be low.

8. Conceptual Site Model

A Conceptual Site Model (CSM) has been prepared for the site with reference to the National Environment Protection (Assessment of Site Contamination) Measure 1999 (Amendment Measure 2013) Schedule B2 (Ref 5). The CSM identifies potential contaminant sources and contaminants of concern, contaminant release mechanisms, exposure pathways and potential receptors. The CSM is presented in Table below.

Table 1: Conceptual Site Model

Known and	Secondary Release Contaminants Exposure		Exposure	Potential Receptors			
Potential Primary Sources	Release Mechanism	Mechanism	Impacted Media	of Concern	Pathway	Current	Future
Imported filling	Placement of filling on-site	Long-term leaching/transport of contaminants via runoff, rain water infiltration/percolation, crushing/weathering of bonded cement fragments	Soil, groundwater, surface water	TRH, BTEX, PAH, metals, pesticides, PCB, asbestos	Dermal contact, inhalation (dust/vapours), ingestion	Potential si Site workers, users (if developme workers, was	
Agricultural Activities	Use of pesticides	Long-term leaching/transport of contaminants via runoff, rain water infiltration/percolation, crushing/weathering of bonded cement fragments	Soil, groundwater, surface water	Pesticides (OCP, OPP)	Dermal contact, inhalation (dust/vapours), ingestion	consultants, trespassers, surface water bodies, groundwater, neighbouring residents/ businesses in	proposed), residences, site workers, maintenance workers, construction workers, consultants,
Adjacent Residential landuse and on-site effluent disposal	Runoff from adjacent properties entering the site	Long-term leaching/transport of contaminants via runoff, rain water infiltration/percolation, crushing/weathering of bonded cement fragments	Soil, groundwater, surface water	TRH, BTEX, PAH, metals, pesticides, microbiological	Dermal contact, inhalation (dust/vapours)	the case of groundwater migration	trespassers, surface water bodies, groundwater

9. Field Work Methods

The field work within the Stage 1 area was undertaken on 4 to 6 March 2013 and 6 to 8 March 2018 and comprised the following;

- Underground services check;
- Site inspection by an environmental engineer;
- Excavation of 43 test pits (Pits 01 to 24, 24A, 25 to 29, 31 to 43) using a New Holland 110 rubber tyred backhoe with 450 mm wide bucket with tiger teeth to depths ranging from 0.25 m to 2.5 m (previous investigation);
- Excavation of 7 test pits (Pits 101 to 107) using a Komatsu WB97R rubber tyred backhoe with 400 mm wide bucket with rock teeth to depths ranging from 0.55 m to 2.4 m (Current investigation);
- Logging and sampling by an engineer from DP;
- Pocket penetrometer tests and dynamic cone penetrometer tests at selected soil depths and locations within test pits;
- Testing of pH and electrical conductivity of surface water observed at the site.

The approximate location of the test pits are presented on the attached Test Location Plan (Drawing 1 in Appendix E). It should be noted that TP01 is the same as Pit 1.

Test pit locations were set out using a hand held GPS. The approximate co-ordinates of the test pits are recorded on the logs in Appendix B. The accuracy of these hand held devices is \pm 10m. The RLs for the test pits were interpolated from the supplied survey plan; these are also shown on the logs in Appendix B.

Samples for environmental purposes were generally collected from the near surface, and at regular depth intervals or changes in strata within each test pit. Soil samples were collected directly from the side walls of the test pits or from the backhoe bucket using disposable gloves. Care was taken to remove any extraneous material deposited on the sample.

All sampling data were recorded on DP chain of custody sheets; the general soil sampling procedure comprised:

- The use of disposable gloves for each sampling event;
- Transfer of samples into the appropriate laboratory-prepared glass jars, and capping immediately;
- Collection of 10% replicate samples for QA/QC purposes;
- Collection of replicate soil samples in zip-lock plastic bags at each depth for PID screening;
- Labelling of sample containers with individual and unique identification, including project number, sample location and sample depth;
- Placement of the sample jars and replicate sample bags into a cooled, insulated and sealed container for transport to the laboratory.

The process of obtaining samples and their transportation, storage and delivery to laboratories for analysis was documented on a DP standard chain-of-custody form. Copies of completed forms are contained in Appendix D.

Replicate samples for each sample were screened for the presence of volatile organic compounds (VOCs), using a calibrated MiniRAE Lite photo-ionisation detector (PID) with a 10.6 eV lamp, calibrated to 100 ppm Isobutylene. The PID is capable of detecting over 300 VOCs.

The work was undertaken using standard procedures for contamination assessments. A list of the procedures used and other information on quality assurance and quality control, including analysis of replicate samples, is presented in Appendix D.

The following field QA/QC procedures were implemented during the investigation:

- Standard operating procedures were followed;
- Site safety and environmental plans were developed prior to commencement of works;
- Replicate field samples were collected and analysed;
- Samples were stored under secure, temperature controlled conditions;
- Chain of custody documentation was used for the handling, transport and delivery of samples to the selected laboratories.

Table 2 summarises the Quality Assurance/Quality Control (QA/QC) data quality indicators and the procedures used to enable their achievement.

Table 2: Data Quality Indicators

Data Quality Indicator	Achievement Evaluation Procedure
Documentation completeness	Completion of field and laboratory chain of custody documentation, completion of pit/bore/sample logs.
Data completeness	Analysis of appropriate determinants and sampling locations based on site history and on-site observation. Use of appropriately trained field staff. Compliance with sample holding times. Use of appropriate laboratory methods and quantitation limits.
Data comparability	Use of NATA certified laboratory, use of consistent sampling technique, trained field staff, consistent laboratory methods and quantitation limits.
Data Representativeness	Completion of logs describing conditions encountered, collection of samples representative of materials encountered at the site, appropriate sampling methodology, analysis of a range of materials encountered, appropriate collection, handling, storage and preservation.
Precision and accuracy for sampling and analysis	Analysis of field and lab replicates, blanks, etc, achievement of acceptable levels for replicate analysis, acceptable levels for laboratory QC criteria.

Test locations were selected for a preliminary assessment of contamination as follows:

- Pits 4 and 41 assessment of near-surface soils downslope of adjacent residential development;
- Pits 1, 13, 17, 23, 27, 37 and 39 assessment of near surface soils across the site following historical agricultural landuse;
- Pit 102 assessment of stockpiled filling.

10. Field Work Results

10.1 Subsurface Conditions

The subsurface conditions encountered in the test pits are presented in detail in the attached test pit logs (Appendix B). These should be read in conjunction with the notes about this report in Appendix A, which explain the descriptive terms and classification methods used in the logs.

The subsurface strata have been classified into differing units encountered throughout the site and are presented below in Table 3.

Table 3: Summary of Subsurface Conditions

Unit	Depth (m)		Description
Onit	From	То	Description
Unit 1 – Topsoil	0.0 (Surface)	0.1/0.3	Topsoil: Generally comprising, brown, dark brown, silt, silty sand, sandy silt, with trace gravel.
Unit 2 – Residual	0.1/0.3	0.25/1.3	Generally comprising a various mixture of clay, silt and sand, but more commonly silty clay or sandy clay, firm to hard, brown, orange, grey and red.
Unit 3 – Weathered Bedrock	0.1/1.3	0.24/2.4	Generally comprising extremely low to medium strength, extremely weathered to slightly weathered claystone and sandstone, with some stiff to hard, dense to very dense silty sandy clay, clayey sand, silty clayey sand and clay exhibiting signs of weathered bedrock.
Unit 4 – Bedrock	0.24/2.4	0.25/2.5	Generally comprising medium to high strength, moderately to slightly weathered claystone and sandstone.

TP05 encountered sandstone boulders to 1.2 m depth within a gully.

Pit 102 was excavated through stockpiled filling in the south-eastern portion of Stage 1. Stockpiled soils at the pit location generally comprised natural sandy clay filling with trace fine to medium gravel. Rock boulders were also observed at the stockpile surface. There were no observations of gross contamination (i.e. staining or odours) at the surface of the stockpile or within filling at the pit location.

A summary of depth to rock is presented in Table 4 below. Rock depths for each pit location are also shown on Drawing 1 in Appendix E.

Table 4: Depth and Level of Rock

D:4	Surface	Depth t	o Rock	Terminati	on Depth	Reason for
Pit	RL (m)	Depth (m)	RL (AHD)	Depth (m)	RL (AHD)	Termination
TP01	63.5	0.35	63.2	0.4	63.1	Refusal
TP02	59.5	0.65	58.9	0.7	58.8	Refusal
TP03	53.0	0.40	52.6	0.65	52.4	Refusal
TP04	49.0	1.00	48.0	1.05	48.0	Refusal
TP05	47.0	0.10	46.9	1.2	45.8	Collapsing
TP06	50.5	0.35	50.2	0.4	50.1	Refusal
TP07	49.5	0.60	48.9	0.9	48.6	Refusal
TP08	49.0	0.60	48.4	0.6	48.4	Refusal
TP09	49.0	0.60	48.4	0.7	48.3	Refusal
TP10	56.5	1.00	55.7	1.1	55.6	Refusal
TP11	58.5	0.15	58.4	0.25	58.3	Refusal
TP12	59.0	0.40	58.6	0.7	58.3	Refusal
TP13	51.0	0.40	50.6	0.4	50.6	Refusal
TP14	54.0	0.35	53.7	0.75	53.3	Refusal
TP15	62.0	0.15	61.9	0.25	61.8	Refusal
TP16	60.0	0.70	59.3	0.75	59.3	Refusal
TP17	65.0	0.60	64.4	0.6	64.4	Refusal
TP18	61.5	0.25	61.3	0.3	61.2	Refusal
TP19	67.0	0.40	66.6	0.5	66.5	Refusal
TP20	65.0	0.10	64.9	1.0	64.0	Refusal
TP21	69.5	0.20	69.3	0.45	69.1	Refusal
TP22	70.0	0.58	69.4	0.6	69.4	Refusal
TP23	64.0	0.65	63.4	0.75	63.3	Refusal
TP24	69.0	0.25	68.8	0.35	68.7	Refusal
TP24A	69.0	0.60	68.4	1.3	67.7	Refusal
TP25	68.0	0.80	67.2	1.0	67.0	Refusal
TP26	67.5	1.00	66.5	2.1	65.4	Refusal
TP27	60.5	1.10	59.4	1.35	59.2	Refusal
TP28	65.0	0.55	64.5	0.6	64.4	Refusal
TP29	59.0	1.30	57.7	2.5	56.5	Refusal
TP31	58.5	0.20	58.3	0.3	58.2	Refusal
TP32	64.0	0.80	63.2	0.85	63.2	Refusal
TP33	64.5	0.20	64.3	0.3	64.2	Refusal
TP34	62.5	0.70	61.8	0.8	61.7	Refusal
TP35	63.0	0.90	62.1	1.3	61.7	Refusal
TP36	58.5	0.60	57.6	0.9	57.3	Refusal
TP37	53.0	0.80	52.2	1.15	51.9	Refusal
TP38	58.0	0.40	57.6	0.4	57.6	Refusal
TP39	57.5	0.50	57.0	0.6	56.9	Refusal
TP40	53.0	0.70	52.3	1.3	51.7	Refusal
TP41	47.5	0.70	46.8	1.3	46.2	Refusal
TP42	58.5	0.60	57.9	0.65	57.8	Refusal
TP43	63.0	0.40	62.6	0.65	62.4	Refusal

Table 4: Depth and Level of Rock (continued)

Dit	Pit Surface		Depth to Rock		Termination Depth	
Fit	RL (m)	Depth (m)	RL (AHD)	Depth (m)	RL (AHD)	Termination
101	64.0	-	-	2.2	61.8	Refusal
102	61.0	2.2	58.8	2.4	58.6	Refusal
103	65.0	0.25	64.8	0.7	64.3	Refusal
104	66.0	1.2	64.8	1.3	64.7	Refusal
105	70.0	-	-	0.55	69.5	Refusal
106	69.0	0.6	68.4	0.7	68.3	Refusal
107	57.0	0.5	56.5	0.7	56.3	Refusal

Free groundwater was observed in Pits 5 and 29 at depths of 1.15 m and 2.5 m respectively. Some localised seepage was observed in Pits 5, 20, and 23 at depths of 0.0 m, 0.7 m, and 0.63 m. All remaining test pits did not encounter free groundwater during the time the pits remained open. It should be noted that groundwater conditions are dependent on factors such as soil permeability and weather conditions and will vary with time.

10.2 Contaminant Observations

The results of PID testing on the collected samples for VOC indicated the absence of gross volatile hydrocarbon impact (i.e. PID<1 ppm). There was no visual or olfactory evidence to suggest the presence of gross contamination in soils encountered during test pit excavation (i.e. odours or staining).

10.3 Surface Water Testing

Surface water pH and Electrical Conductivity (EC) testing was undertaken on dam water in the northern portion of the site and at the southern site boundary (i.e. surface water flow from culverts beneath the unsealed road) during the site inspection in March 2013. The testing was undertaken using a calibrated hand held meter. The results of surface water testing are presented in Table 5 below. Surface Water testing locations are shown in Drawing 1, Appendix E.

Table 5: Surface Water Testing (March 2013)

Location	рН	EC (µS/cm)
Dam	7.6	90
Southern Boundary	6.8	166

11. Laboratory Testing

11.1 Geotechnical

Geotechnical laboratory testing included five 4 day soak CBR / standard compaction tests on subgrade materials for pavement design, 9 shrink swell tests, 3 Atterberg limits and linear shrinkage for site classification and 10 Emerson crumb for dispersion.

Detailed laboratory test result sheets are attached (in Appendix C) and are summarised in Table 6 below.

Table 6: Geotechnical Laboratory Test Results

Pit	Depth (m)	Description	FMC (%)	SOMC (%)	SMDD (t/m³)	CBR (%)	Swell (%)	lss (% per ∆pF)	LL (%)	PL (%)	PI (%)	LS (%)	Emerson Class
TP01	0.25	Clay: Brown and Orange	-	-	-	-	-	-	-	-	-	-	3
TP02	0.35-0.65	Clay: Brown	22.5	-	-	-	-	2.4	-	-	-	-	-
TP03	0.20-0.40	Silty Clay: Grey	14.9	17.0	1.72	7	0.4	-	-	-	-	-	-
TP06	0.15	Sandy Clay/ Clayey Sand: Brown	-	-	-	-	-	-	-	-	-	-	5
TP09	0.40	Silty Clay: Brown Grey	-	-	-	-	-	-	-	-	-	-	3
TP12	0.40-0.70	Silty Sandy Clay: Brown/orange	23.8	21.5	1.60	6	0.8	-	-	-	-	-	-
TP13	0.20	Sandy Clay: Grey	-	-	-	-	-	-	-	-	-	-	3
TP13	0.10-0.45	Sandy Clay: Grey	16.6	-	-	-	-	0.4	-	-	-	-	-
TP17	0.20-0.60	Silty Clayey Sand: Dark Brown	-	-	-	-	-	-	-	-	-	-	3
TP22	0.40-0.58	Silty Clay: Grey	-	-	-	-	-	-	-	-	-	-	3
TP23	0.30-0.60	Silty Clay: Grey with light brown	22.3	23.5	1.54	5	1.3	-	-	-	-	-	-
TP24A	0.25-0.60	Clay: Brown	31.2	-	-	-	-	3.7	-	-	-	-	-
TP26	0.10-0.50	Silty Clay: Red and brown	32.5	-	-	-	-	2.9	-	-	-	-	-
TP26	0.80	Claystone: Red, orange and grey	-	-	-	-	-	-	-	-	-	-	6
TP27	0.80-1.10	Clay: Grey	27.6	-	-	-	-	-	77	20	57	14.0	-
TP28	0.10-0.50	Sandy Clay: Light brown and orange	24.4	-	-	-	-	2.0	-	-	-	-	-

Table 6: Geotechnical Laboratory Test Results (Continued)

Pit	Depth (m)	Description	FMC (%)	SOMC (%)	SMDD (t/m³)	CBR (%)	Swell (%)	lss (% per ∆pF)	LL (%)	PL (%)	PI (%)	LS (%)	Emerson Class
TP29	1.60	Clay: Grey	27.6	-	-	-	-	-	53	13	40	13.5	-
TP32	0.15	Topsoil: Brown silty sand	-	-	-	1	-	-	-	1	1	-	6
TP32	0.15-0.30	Silty Clay: Brown	20.9	-	ı	ı	-	1.3	-	ı	ı	•	-
TP34	0.40-0.80	Clay: Grey and Orange	22.6	26.0	1.47	2.0	2.9	-	-	ı	1	-	-
TP35	0.15-0.40	Silty Clay: Brown	24.2	-	ı	ı	-	3.9	-	ı	ı	•	-
TP39	0.15-0.45	Sandy Clay: Brown	30.3	-	ı	ı	-	3.6	-	ı	1	-	-
TP39	0.60	Sandstone and Siltstone: Orange	-	-	ı	ı	-	-	-	ı	ı	•	2
TP40	1.00-1.30	Claystone: Grey and Orange	23.8	25.0	1.49	17	0.3	-	-	-	-	-	-
TP41	0.50	Clay: grey	-	-	-	-	-	-	-	-	-	-	5
TP42	0.20-0.50	Silty Clay: Brown	25.3	-	-	-	-	2.8	-	-	-	-	-
TP43	0.15-0.35	Silty Sandy Clay: Light brown	20.0	-	-	-	-	-	21	15	6	2.0	-

Notes to Table 6:

FMC – Field Moisture Content SOMC – Standard Optimum Moisture Content

SMDD – Standard Maximum Dry Density CBR – California Bearing Ratio (4 day soak), with 4.5 kg surcharge

Swell - Strain measured on CBR specimen after 4 days' soaking

Iss - Shrink Swell IndexLL - Liquid Limit

PL – Plastic Limit PI – Plasticity Index

LS - Linear Shrinkage

Note that clays tested in TP27 and TP29 have a high plasticity

11.2 Contamination

Laboratory testing for the preliminary contamination assessment was undertaken by Envirolab Services, a National Association of Testing Authorities, Australia (NATA) registered laboratory. Analytical Methods used are shown on the laboratory sheets in Appendix C.

A total of 12 soil samples (including one replicate sample) were selected to provide a preliminary assessment of soil / fill conditions at the site. The samples were selected to target the identified potential sources of contamination (See Section 7).

The selected samples were analysed for some or all of the following potential contaminants:

- Total Recoverable Hydrocarbons (TRH);
- Benzene, Toluene, Ethyl Benzene, Xylene (BTEX);
- Polycyclic Aromatic Hydrocarbons (PAH);
- OC/OP Pesticides:
- Polychlorinated Biphenyls (PCBs).

Metals – Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Lead (Pb), Mercury (Hg), Nickel (Ni), Zinc (Zn).

The results of chemical analysis undertaken on soils from the site are presented in the attached laboratory report sheets (Appendix C), and are summarised in Table 7 to Table 9 below. The results of QA/QC testing are presented in Appendix D.

Table 7: Results of Laboratory Analysis on Soils - Metals

Pit	Depth (m)	PID (ppm)	As ³	Cd	Cr ⁷	Cu	Pb ⁴	Hg ^{5,6}	Ni	Zn
Pit 1	0.1	<1	5	<0.4	8	2	20	<0.1	1	11
Pit 4	0.1	<1	6	<0.4	12	27	12	<0.1	12	50
Pit 13	0.1	<1	7	<0.4	8	16	11	<0.1	8	35
Pit 17	0.05	<1	<4	<0.4	1	2	6	<0.1	<1	7
Pit 23	0.05-0.1	<1	<4	<0.4	3	<1	11	<0.1	<1	5
Pit 27	0.1	<1	<4	<0.4	3	<1	10	<0.1	<1	2
Pit 37	0.1	<1	<4	<0.4	1	<1	6	<0.1	<1	3
Pit 39	0.1	<1	8	<0.4	5	<1	22	<0.1	<1	6
D4	-	<1	12	<0.4	6	<1	34	<0.1	<1	8
Pit 41	0.1	<1	<4	<0.4	2	2	10	<0.1	<1	4
101	0.5	<1	<4	<0.4	3	<1	10	<0.1	<1	2
102	1	<1	<4	<0.4	3	2	9	<0.1	1	7
Laboratory I	PQL	-	4	0.4	1	1	1	0.1	1	1
NEPM HIL A	1 (Ref 5)		100	20	100	6000	300	40	400	7400
_	vestigation l In residentia	100	NC	640	110	1100	NC	35	310	
NSW EPA - G Guidelines -	eneral Solid (Ref 6)	100	20	100	NC	100	4	40	NC	
NSW EPA - R Guidelines -	estricted Sol (Ref 6)	400	80	400	NC	400	16	160	NC	

Notes to Table 7:

All results in mg/kg on a dry w eight basis

NC - No Criteria

PID - Photoionisation Detector

PQL - Practical Quantitation Limits

- 1 Health Based Criteria for Residential Land Use
- 2- HIL generally applies to the top 3m of soil
- 3- HIL assumes 70% oral bioavailability. Site-specific bioavailability may be important and

should be considered where appropriate (refer Schedule B7)

4- HIL is based on blood lead models (adult lead model where 50% bioavailability has been considered.

Site-specific bioavailability may be important and should be considered where appropriate (refer Schedule B7)

- 5- Assessment of methyl mercury should only be considered if there is evidence of its potential source.
- 6- HIL does not address elemental mercury
- 7 Chromium (VI) (Conservative)
- 8- ElLs refer to contamination present in soil for at least two years

exceeds NEPM Health-Based Criteria for residential landuse

Bold results exceed NSW EPA Waste Classification Guidelines for General Solid Waste without leachability testing <u>Underlined</u> results exceed NEPM Ecological investigation limits

D4 - replicate samples of Pit 39/0.1

Table 8: Results of Laboratory Analysis on Soils – TRH, BTEX

	Depth	PID		Т	RH				TRH (NEPI	VI)				BTEX			
Pit	(m)	(ppm)	C ₆ - C ₉	C ₁₀ - C ₁₄	C ₁₅ - C ₂₈	C ₂₉ - C ₃₆	F1 (C ₆ -C ₁₀ -BTEX)	F2 (>C ₁₀ -C ₁₆ - Naphthalene)	C ₆ -C ₁₀	>C ₁₀ -C ₁₆	F3 (>C ₁₆ -C ₃₄)	F4 (>C ₃₄ -C ₄₀)	Benzene	Toluene	Ethyl Benzene	Xylenes	Naphthalene
Pit 1	0.1	<1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Pit 4	0.1	<1	<25	<50	<100	<100	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1
Pit 13	0.1	<1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Pit 17	0.05	<1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Pit 23	0.05-0.1	<1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Pit 27	0.1	<1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Pit 37	0.1	<1	<25	<50	<100	<100	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1
Pit 39	0.1	<1	<25	<50	<100	<100	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1
D4	-	<1	<25	<50	<100	<100	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1
Pit 41	0.1	<1	<25	<50	<100	<100	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1
101	0.5	<1	<25	<50	<100	<100	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1
102	1	<1	<25	<50	<100	<100	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1
Laboratory	PQL		25	50	100	100	25	50	25	50	100	100	0.2	0.5	1	3	1
NEPM HSL A	N ⁶ (Ref 5) CLA	ΑY	NC		NC		50/90 ³	280/NL ³	NC	NC	NC	NC	0.7/1 ³	480/NL ³	NL/NL ³	110/310 ³	5/NL ³
NEPM ESL Ro (Ref 5) - Fine	esidential A, e Soils	B,C 4, 7	NC		NC		180 *	NC	NC	120 *	1300	5600	65	105	125	45	NC
Managemer fractions in Residential		ГРН	NC		NC		NC	NC	800	1000	3500	10000	NC	NC	NC	NC	NC
	General Solid elines - (Ref		650		10000 tota	al	NC	NC	NC	NC	NC	NC	10	288	600	1000	NC
	Restricted So elines - (Ref		2600	•	40000 tota	al	NC	NC	NC	NC	NC	NC	40	1152	2400	4000	NC

Notes to Table 8:

All results in mg/kg on a dry w eight basis

NC - No Criteria

NT - Not Tested

PID - Photoionisation Detector

PQL - Practical Quantitation Limits

- 3- Soil HSLs for vapour intrusion (mg/kg) for CLAY samples recovered from 0 m to <1 m/1 m to <2 m $\,$
- 4- ESLs are of low reliability except where indicated by * which indicates that the ESLs are of moderate reliability
- 5- Management limits are applied after consideration of relevant ESLs and HSLs
- 6- Multiplication factor may be applied (for depths >2m) subject to favourable biodegradation conditions refer to 2.4.10
- 7- ESLs apply from the surface to 2 m depth below finished surface/ground level

exceeds NEPM HSL Health-Based Criteria for Residential Landuse

exceeds NEPM management limits for TPH fractions in fine soils - Residential Landuse

 $\underline{\text{Underlined}}$ results exceed the NEPM ESL guideline values for Residential Landuse

Bold results exceed NSW EPA Waste Classification Guidelines for General Solid Waste without leachability testing

D4 - replicate samples of Pit 39/0.1

May 2018

Table 9: Results of Laboratory Analysis on Soils - PAH, PCB, OCP, OPP

Pit	Depth (m)	PID (ppm)	Total PAH	Benzo(a) Pyrene	Benzo(a) Pyrene TEQ	PCB ³	Total OPP	Chlorpyrifos	Total OCP	Aldrin + Dieldrin	Chlordane	DDT+DDE +DDD	Endosulphan	Endrin	Heptachlor	НСВ	Methoxychlor
Pit 1	0.1	<1	NT	NT	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pit 4	0.1	<1	<0.05	< 0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pit 13	0.1	<1	NT	NT	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pit 17	0.05	<1	NT	NT	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pit 23	0.05-0.1	<1	NT	NT	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pit 27	0.1	<1	NT	NT	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pit 37	0.1	<1	<0.05	< 0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pit 39	0.1	<1	<0.05	< 0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
D4	-	<1	<0.05	< 0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pit 41	0.1	<1	<0.05	< 0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
101	0.5	<1	<0.05	< 0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
102	1	<1	<0.05	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Laboratory	PQL		0.05	0.05	0.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
NEPM HIL A	¹ (Ref 5)		300	NC	3	1	NC	160	NC	6	50	240	270	10	6	10	300
NEPM ESL R (Ref 5) - Fine	esidential A, e Soils	B,C ⁷	NC	0.7	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
NSW EPA - G Guidelines	Seneral Solid - (Ref 6)	Waste	200	0.8	NC	50 SCC1	NC	4	NC	NC	NC	NC	60	NC	NC	NC	NC
_	Restricted So elines - (Ref		800	3.2	NC	50 SCC2	NC	16	NC	NC	NC	NC	240	NC	NC	NC	NC

Notes to Table 9:

All results in mg/kg on a dry w eight basis

NC - No Criteria

NT - Not Tested

PID - Photoionisation Detector

PQL - Practical Quantitation Limits

TEQ - Toxicity Equivalent Quotient

Total PAH - Sum of positive values

- 1 Health Based Criteria for Residential Land Use
- 2- ESLs apply from the surface to 2 m depth below finished surface/ground level
- 3- PCB HILs relates to non-dioxin-like PCB only
- 4- Endosulphan is total of Endosulphan I, Endosulphan II and Endosulphan Sulphate exceeds NSW EPA Health-Based Criteria for Residential Landuse

Bold results exceed NSW EPA Waste Classification Guidelines for General Solid Waste without leachability testing

D4 - replicate samples of Pit 39/0.1

11.3 Salinity

Laboratory testing for the preliminary assessment of potential salinity at the site was undertaken by Envirolab Services, a National Association of Testing Authorities, Australia (NATA) registered laboratory. Analytical Methods used are shown on the laboratory sheets in Appendix C.

A total of 20 soil samples were selected to provide a preliminary assessment of soil salinity at the site with reference to the Urban Salinity Guidelines (Ref 7).

The selected samples were analysed for one or more of the following:

- Electrical Conductivity (EC);
- Cation Exchange Capacity (CEC);
- Exchangeable Sodium Percentage (ESP).

The results of analysis undertaken on soils from the site are presented in the attached laboratory report sheets (Appendix C), and are summarised in Table 10 below.

Table 10: Results of Laboratory Analysis on Soils - EC, CEC, ESP

Pit	Depth (m)	Soil Description	EC μS/cm	ECe dS/m	Cation Exchange Capacity	ESP	Soil Salinity Class ¹
Pit 2	0.1	silty sandy topsoil	19	0.27	4.5	<1	non-saline
Pit 2	0.3	clayey sand	26	0.23	NT	NT	non-saline
Pit 6	0.15	sandy clay/clayey sand	25	0.23	1.6	<1	non-saline
Pit 9	0.15	silty sand topsoil	30	0.42	1.1	<1	non-saline
Pit 9	0.4	silty clay	36	0.31	NT	NT	non-saline
Pit 12	0.15	silty clay	35	0.30	NT	NT	non-saline
Pit 12	0.5	silty sandy clay	32	0.27	4.3	2.8	non-saline
Pit 17	0.05	silty sand topsoil	69	0.97	7.2	<1	non-saline
Pit 17	0.4	silty clayey sand	28	0.25	NT	NT	non-saline
Pit 22	0.1	sandy silty topsoil	82	1.15	NT	NT	non-saline
Pit 22	0.4	silty clay	57	0.48	4.7	<1	non-saline
Pit 28	0.1	silty sand topsoil	34	0.48	4.2	<1	non-saline
Pit 28	0.4	sandy clay	67	0.57	NT	NT	non-saline
Pit 31	0.1	silty sand topsoil	38	0.53	NT	NT	non-saline
Pit 34	0.1	silty sand topsoil	30	0.42	2.9	<1	non-saline
Pit 34	0.3	clay	35	0.25	NT	NT	non-saline
Pit 36	0.1	silty sand topsoil	32	0.45	NT	NT	non-saline
Pit 36	0.3	sandy silty clay	62	0.53	3.5	3.1	non-saline
Pit 41	0.1	silty sand topsoil	46	0.64	NT	NT	non-saline
Pit 41	0.3	silty clay	170	1.45	5.4	18.7	non-saline
Pit 107	it 107 0.4 silty sand		30	0.42	NT	NT	non-saline
Laborat	Laboratory PQL		1	0.01	1	1	

Notes to Table 10:

CEC in meq/100g

NT - Not Tested

ESP in %

Saline Class:

non-saline <2 dS/m

slightly saline 2-4 dS/m

moderately saline 4-8 dS/m

very saline 8-16 dS/m

highly saline >16 dS/m

1 - Soil Salinity Classes from Reference 7

12. Site Assessment Criteria - Contamination

12.1 Introduction

It is understood that the site will be developed for residential purposes.

The Site Assessment Criteria (SAC) applied in the current investigation are informed by the CSM which identified human and ecological receptors to potential contamination on the site (refer to Section 8 of report). Analytical results were assessed (as a Tier 1 assessment) against the SAC comprising primarily the investigation and screening levels of Schedule B1, *National Environment Protection (Assessment of Site Contamination) Measure* 1999, as amended 2013 (NEPC, 2013). NEPC (2013) is endorsed by the NSW EPA under the CLM Act 1997.

The investigation and screening levels applied in the current investigation comprise levels adopted for a generic standard residential landuse scenario.

12.2 Health Investigation and Screening Levels

The generic HIL and HSL are considered to be appropriate for the assessment of contamination at the site. The adopted soil HIL and HSL for the potential contaminants of concern are presented in Table 11.

Table 11: HIL and HSL in mg/kg Unless Otherwise

	Contaminants	HIL- A and HSL-A	HSL- A 2,3
	Arsenic	100	NC
	Cadmium	20	NC
	Chromium (VI)	100	NC
	Copper	6000	NC
Metals	Lead	300	NC
	Mercury (inorganic)	40	NC
	Nickel	400	NC
	Zinc	7400	NC
	Benzo(a)pyrene TEQ ¹	3	NC
PAH	Naphthalene	1400	5
	Total PAH	300	NC
	C6 – C10 (less BTEX) [F1]	4400 ⁴	50
TO.	>C10-C16 (less Naphthalene) [F2]	3300 ⁴	280
TRH	>C16-C34 [F3]	4500 ⁴	NC
	>C34-C40 [F4]	6300 ⁴	NC
	Benzene	100 ⁴	0.7
ВТЕХ	Toluene	14000 ⁴	480
DIEX	Ethylbenzene	4500 ⁴	NL
	Xylene	12000 ⁴	110

Notes to Table 11:

- 1 Sum of carcinogenic PAH
- The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would results in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.
- 3 The HSL have been calculated for a potential vapour intrusion pathway, a clay soil based on the conditions encountered (Section 10.1 of the report) and an assumed depth to contamination of 0 m to <1 m.
- 4 Direct Contact HSL for TRH fractions

NC - No Criteria

As shown in Table 11, the adopted HSLs are predicated on a potential vapour intrusion pathway, as identified in the CSM. The CSM also identifies a direct contact pathway and construction worker receptors.

12.3 Ecological Investigation Levels

EIL, where appropriate, have been derived in NEPC (2013) for only a short list of contaminants comprising As, Cu, Cr (III), DDT, naphthalene, Ni, Pb and Zn. The adopted EIL, derived using the *Interactive (Excel) Calculation Spreadsheet* (Standing Council on Environment and Water (SCEW) website (http://www.scew.gov.au/node/941) are shown in the following Table 12.

Table 12: EIL in mg/kg

	Analyte	EIL	Comments
Metals	Arsenic	100	Adopted parameters
	Copper	110	pH = 6 (conservative assumed value)
	Nickel	35	CEC = 5 cmol/kg (average from lab testing); assumed clay content 40%
	Chromium III	640	"Aged" (>2 years) source of contamination
	Lead	1100	low for traffic volumes in NSW
	Zinc	310	
	DDT		
N	aphthalene	170	

12.4 Ecological Screening Levels

ESL are used to assess the risk of selected petroleum hydrocarbon compounds, BTEX and benzo(a)pyrene to terrestrial ecosystems. The adopted ESL are shown in the following Table 13.

Table 13: ESL in mg/kg

	Analyte	ESL ¹	Comments
TRH	C ₆ – C ₁₀ (less BTEX) [F1]	180*	All ESLs are low
	>C ₁₀ -C ₁₆ (less Naphthalene) [F2]	120*	reliability apart from those marked with *
	>C ₁₆ -C ₃₄ [F3]	1300	which are moderate
	>C ₃₄ -C ₄₀ [F4]	5600	reliability
	Benzene	65	
BTEX	Toluene	105	
DIEX	Ethylbenzene		
	Xylene		
PAH	Benzo(a)pyrene	0.7	

Note to Table 13:

¹ The ESL have been calculated for a fine soil based on the conditions encountered (Section 10.1 of the report) and a residential landuse

12.5 Management Limits

In addition to appropriate consideration and application of the HSL and ESL, there are additional considerations which reflect the nature and properties of petroleum hydrocarbons, including:

- Formation of observable light non-aqueous phase liquids (LNAPL);
- Fire and explosion hazards;
- Effects on buried infrastructure e.g. penetration of, or damage to, in-ground services.

The adopted management limits from Schedule B1 of NEPC (2013) are shown in the following Table 14.

Table 14: Management Limits in mg/kg

	Analyte	Mana	gement Limit				
TRH	C ₆ – C ₁₀ (F1) [#]	800	The management limits have				
	>C ₁₀ -C ₁₆ (F2) #	1000	been calculated for a fine soi based on the conditions				
	>C ₁₆ -C ₃₄ (F3)	3500	encountered (Section 10.1 of				
	>C ₃₄ -C ₄₀ (F4)	10000	report) and residential landuse				

Note To Table 14:

12.6 Waste Classification

The results of chemical testing were also compared against NSW EPA Waste Classification Guidelines (Ref 6), to assess possible off-site disposal options to a licenced facility.

13. Proposed Development

It is understood that the proposed North Shearwater residential subdivision will contain 5 stages of development.

Stage 1 of the development is proposed to include 153 residential lots and approximately 2,700 m of internal roads.

The proposed layout of lots and roads is shown on Drawing 2 attached. Further details have yet to be designed.

[#] Separate management limits for BTEX and naphthalene are not available hence these have not been subtracted from the relevant fractions to obtain F1 and F2

14. Comments

14.1 Geotechnical

14.1.1 Slope Stability

An area of possible slope instability was described in the Coffey report (Ref 4). That area is located in the far north eastern part of Stage 1, within an area falling to the south-east at slopes of up to 40°.

The slopes observed near the north-eastern and eastern parts of the site ranged up to about 20°. The slopes were well vegetated with grass and, near the eastern part of the site, medium dense cover of trees.

The northern section contained only a few trees and slopes were measured at 15° to 20°.

Figure 7 and Figure 8 below show the slopes in the vicinity of the eastern / north-eastern area of Stage 1

Figure 7: North-eastern slope

Figure 8: Eastern slopes

Figure 9 below shows a scarp that probably indicates past landslip activity. The scarp was about 0.5 m high and was located just beyond the north-eastern boundary of Stage 1. Vegetation at the toe of the scarp indicated probable seepage in the past.

Figure 9: Landslip scarp, north-eastern area

No signs of slope instability were observed near the eastern boundary of Stage 1.

No groundwater seepage was observed on or near the Stage 1 site in April 2013 or March 2018.

14.1.2 Identified Hazards and Inferred Consequences

Slope stability assessment of Stage 1 site was carried out in accordance with AGS guidelines (Ref 8).

Hazard 1 relates to the slow creep of the shallow soil on the steeper slopes at, and just beyond, the eastern and north-eastern parts of Stage 1 site. It has been assessed as 'unlikely'. The consequences of creep to the residential development proposed for Stage 1 would be 'minor' provided the footings for the structures near the eastern part of Stage 1 are founded on rock. It is noted that bedrock was encountered at depths ranging from 0.1m to 0.4 m (Lots 45, 46, 82 to 85) in the pits excavated within these lots.

Hazard 2 relates to a slope failure of the soil and rock on the steeper slope immediately to the east of Stage 1 and its effect on Stage 1 development. It has been assessed to be 'rare' owing to geological / geomorphology setting of the site and the proximity of the hazard to the Stage 1 boundary, the presence of shallow residual soils of very stiff consistency and the presence of bedrock at depths of about 0.5 m in Stage 1. The consequences of a deep seated failure, if it progressed to the boundary with Stage 1, would be 'minor' because structures will be set back from the Stage 1 boundary due to the asset protection zone.

The hazard associated with the existing dam embankment has not been considered further here because the dam is proposed to be filled and associated risks would be managed in the design and construction of subdivision earthworks.

14.1.3 Risk to Property

The site has been assessed with reference to the Australian Geomechanics Society Landslide Taskforce "Practice Note Guidelines for Landslide Risk Management" March 2007 (Ref 8Error! Reference source not found.). Table below summarises the results of this assessment, together with a qualitative assessment of the likelihood of occurrence of a landslide (after construction), or mass ground movements and its consequence and risk to property. This table presents levels of risks following construction on the proviso that structures are designed and constructed taking into account the advice and recommendations presented in this report.

Table 15: Risk Assessment for Property - If Recommendations Adopted

Hazard	Likelihood	Consequence to Proposed Development	Risk to Proposed Development
Slow creep of residual soil near north-eastern site boundary affecting Stage 1	Unlikely	Minor	Low
Soil or rock failure on adjacent site affecting Stage 1	Rare	Minor	Very Low

Reference to the AGS guidelines indicates the site has a low risk level which is usually acceptable to regulators and owners.

14.1.4 Mine Subsidence

Subsidence Advisory NSW, formerly The Mine Subsidence Board (MSB), publishes district maps indicate that the site is not within a proclaimed mine subsidence district. .

Coal seam outcrops have not been mapped in the vicinity of the site (refer Section 3 above), and coal mining is unlikely to be considered in the area.

14.1.5 Sediment Basins

Detailed geotechnical advice on sediment basins should be provided when dam locations and embankment heights are determined.

Typically, embankment heights should be limited to 3 m and have upstream and downstream slopes of 3(H):1(V) but flatter if vegetation or maintenance is required.

Laboratory tests of site materials show that the soils indicated an Emerson class of 3 or lower for 6 out of the 10 samples. Soils with an Emerson class of less than 4 are considered to have a high potential for dispersion.

Soils with Emerson Class 1 to 4 should be treated with extra caution if they are to be used in dam embankment construction or located within the dam foundation. The use of dispersive soils in embankments which are to retain water is a major contributor to piping failure within the embankments. Most dispersive soils can be rendered non dispersive through the addition of gypsum.

The soils on this site should be modified by the addition of gypsum in dam foundation areas and dam embankments.

14.1.6 Site Classification

Site classification of foundation soil reactivity provides an indication of the propensity of the ground surface to move with seasonal variation in moisture. The site classification is based on procedures presented in AS 2870–2011 (Ref 9), the soil profiles revealed in the test pits and on the results of laboratory testing.

The classification of lots for the residential subdivision in their current condition is shown in Table 16below.

Table16: Lot Classifications

Lot	Classification	Lot	Classification	Lot	Classification	Lot	Classification
1	S	32	M	63	S	94	S
2	S	33	S	64	S	95	S
3	S	34	S	65	S	96	S
4	S	35	S	66	S	97	S
5	S	36	S	67	S	98	S
6	S	37	S	68	M	99	М
7	S	38	S	69	M	100	М
8	S	39	S	70	М	101	Р
9	S	40	S	71	S	102	Р
10	S	41	S	72	S	103	М
11	S	42	S	73	S	104	М
12	S	43	S	74	S	105	М
13	S	44	S	75	S	106	М
14	М	45	S	76	S	107	М
15	М	46	S	77	S	108	М
16	М	47	S	78	S	109	М
17	S	48	S	79	М	110	М
18	S	49	S	80	М	111	М
19	S	50	S	81	М	112	S
20	S	51	S	82	S	113	S
21	S	52	S	83	S	114	S
22	S	53	S	84	S	115	S
23	S	54	S	85	S	116	S
24	S	55	S	86	S	117	S
25	S	56	S	87	S	118	S
26	S	57	M	88	S	119	S
27	S	58	S	89	S	120	S
28	S	59	М	90	S	121	S
29	М	60	М	91	S	122	S
30	М	61	М	92	S	123	S
31	М	62	М	93	S	124	S

Table16: Lot Classifications (continued)

Lot	Classification	Lot	Classification	Lot	Classification	Lot	Classification
125	S	133	S	141	S	149	S
126	S	134	S	142	S	150	S
127	S	135	S	143	S	151	S
128	S	136	S	144	S	152	S
129	Р	137	S	145	S	153	S
130	Р	138	S	146	S		
131	Р	139	S	147	S		
132	S	140	S	148	S		

Notes to Table 16:

S - Slightly Reactive

M - Moderately Reactive

The characteristic surface movement, ys, for the Class S sites is estimated to range from about 5 mm to 20 mm, and that of the Class M sites to range from about 25 mm to 35 mm.

It is recommended that all footings be placed within the same material to minimise potential differential settlements. Therefore all footings should be founded within the natural clay or bedrock material. All footings should be designed in accordance with Australian Standard AS 2870–2011 (Ref 9).

Site classification, as above, has been based on the information obtained from the test pits and on the results of laboratory testing. In the event that conditions encountered during construction are different to those presented in this report, it is recommended that further advice be obtained from this office.

It should be noted that this classification is dependent on proper site maintenance, which should be carried out in accordance with the attached CSIRO BTF 18, "Foundation Maintenance and Footing Performance: A Homeowner's Guide" and with AS 2870–2011 (Ref 9).

Design, construction and maintenance should take into account the need to achieve and preserve an equilibrium soil moisture regime beneath and around buildings. Such measures include providing an outward fall to all paved areas around buildings. These and other measures are described in AS 2870–2011 (Ref 9) and the attached CSIRO publication BTF 18.

Masonry walls should be articulated in accordance with TN 61 (Ref 10).

The above classification should be revised if any significant cutting or filling is proposed, as required by AS 2870–2011 (Ref 9). Drawing 1 indicates that cutting or filling associated with roads will affect some of the lots. Site classification should be revised to reflect the properties of the filling on completion of earthworks.

The clay at the site displays an appreciable propensity for shrink-swell movements. Its use as filling on lots will have a significant effect on surface movements resulting in a more severe classification.

Fill stockpiles located on Lots 10 and 11 results in a Class P site classification due to the addition of greater than 0.4 m of uncontrolled fill. It is expected that Lots 10 and 11 would be Class S or M after removal of the filling.

14.1.7 Footings

14.1.7.1 Footings

Strip and pad footings or stiffened slabs founded in the natural clay, engineered filling or bedrock would be suitable for the support of residential structures.

The footings should be founded on natural clay or weathered rock at depths in the order of 0.3 m to 0.5 m. Footings founded in accordance with this advice may be proportioned for a maximum allowable bearing pressure of 100 kPa. Footings should not be founded in existing or proposed filling unless it has been placed and compacted under Level 1 earthworks inspection and testing in accordance with AS 3798–2007 (Ref 11).

It is anticipated that settlement of footings of 0.5 m to 1 m width, proportioned as above, would not exceed about 5 to 10 mm. Larger movements might occur due to changes in soil moisture content as discussed in Section 14.1.6. The settlements given above are separate to movement associated with reactive soils.

Footings may be required to found in the underlying bedrock strata. Bored concrete piers should be socketed into weathered rock and proportioned for a maximum allowable end bearing pressure of 700 kPa. Larger design pressures may be available, subject to confirmation by geotechnical inspection for specific footings.

Care should be taken to ensure that the base of the bored pier holes are clean and free of all loose debris or water prior to placement of concrete. Accordingly, pier hole inspections are recommended during construction to confirm that the appropriate founding stratum is achieved.

14.1.7.2 General

All footing types should be suitably protected against decay and corrosion.

All footings for the proposed structure should be founded on the same bearing stratum. Allowance for potential shrink-swell movements should be made in the design of all proposed footings and structures.

Good hillside construction should be undertaken in accordance with Australian Geoguide LR8 (Appendix A)

14.1.8 Pavement Thickness Design

14.1.8.1 Subgrade Conditions

Conditions expected at the subgrade level for the internal roads for Stage 1 are controlled filling, Unit 2, Unit 3 and Unit 4 materials, depending on the finished level of the roads.

Some localised groundwater seepage was observed during the investigation.

14.1.8.2 Subgrade Design Strength

The subgrade conditions along the proposed pavements are expected to comprise controlled filling, natural clay soils as well as bedrock (0.1 m to 1.3 m depth) throughout Stage 1.

The laboratory testing indicates CBR values of 2.0%, 5%, 6%, and 7% and swell values of 0.4%, 0.8%, 1.3% and 2.9% for the clay soils. One test on claystone materials indicated a CBR value of 17%. The subgrade clay soils are likely to soften and swell with an increase in moisture content.

Dynamic penetrometer testing carried out at test pit locations generally indicated values ranging from 2 to 32 blows per 150 mm increment, but more commonly 2 to 7 blows. These values indicate an in situ CBR in the range of about 2% to 10% (Ref 14). These values should be treated with caution as the correlation used to determine in-situ CBR from the dynamic penetrometer tests applies usually to subgrades beneath existing sealed pavements.

Based on the above, a design CBR of 5% for clay subgrade and 10% for rock subgrade has been adopted for the pavement thickness design.

When the subgrade is less than CBR 5%, an additional select layer will be required, e.g. around TP34 where a CBR value of 2.0% was measured, a minimum thickness of 400 mm select subgrade material would be required.

14.1.8.3 Design Traffic

The roads were labelled Roads 1 to 9, in accordance with the supplied Drawing "Plan of Proposed Residential Subdivision, Stage 1 Detail Plan" dated 15 February 2018. For the purpose of this geotechnical report, the road labels are shown on Drawing 2 in Appendix E.

A design traffic loading in terms of Equivalent Standard Axle repetitions (ESA) for the proposed pavement was estimated using the procedures presented in the Council guidelines (Ref 12) and the number of lots serviced by the road. The values are presented below in Table 17.

Table17: Design Traffic

Road	Lots	Classification	Design Traffic (ESA)
Road 1	Viney Creek Road Widening	Collector	1 x 10 ⁶
Road 2	all lots for Stages 1, 2, 4 and 5	Collector	1 x 10 ⁶
Road 3	<20 (Lots 1 to 11)	Access Street	6 x 10 ⁴
Road 4	<100 (Lots 20 to 89, 106 to 119, and 141 to 153)	Local Street	3 x 10 ⁵
Road 5	<100 (Lots 58 to 68, 85 to 87, 106 to 119, and 143 to 146	Local Street	3 x 10 ⁵
Road 6	all lots for Stages 1 and 2	Collector	1 x 10 ⁶
Road 7	Between Roads 4 and 5 <20 (Lots 57 to 58, 79 to 80, 87 to 88)	Access Street	6 x 10⁴
Roau /	Between Roads 2 and 5 <100 (Lots 46 to 52, 57 to 61, 76 to 90, 115 to 119, 140 to 149)	Local Street	3 x 10⁵
Road 8	<20 (Lots 133 to 138)	Access Street	6 x 10 ⁴
Road 9	<20 (120 to 126)	Access Street	6 x 10 ⁴

If the traffic loading is to be different from these values, the pavement thickness design should be reviewed.

14.1.8.4 Pavement Thickness Design

The following pavement thickness design has been undertaken in accordance with Council guidelines (Ref 13) and Austroads (Ref 14) and is presented below in Table 18:

Table 18: Pavement Thickness Design

	Thickness (mm)					
Description	Collector		Local Street		Access Street	
Road	2 and 6		4, 5 and 7		3, 7, 8 and 9	
Design Traffic	1 x 10 ⁶		3 x 10 ⁵		6 x 10 ⁴	
Design Subgrade	CBR =5%	CBR =10%	CBR =5%	CBR =10%	CBR =5%	CBR = 10%
Wearing Course	2 coat bitumen seal or 30 mm AC*					
Basecourse	130 120 100#			00#		
Subbase	265	120	220	100#	180	90#
Select Subgrade	150-400	-	150-400	-	150-400	-
Total	395 plus select	250	340 plus select	230	280 plus select	190

Notes to Table 18:

14.1.8.5 General

A select layer is to be provided for the clay subgrade for possible soft or weak areas (e.g. in the area represented by TP34). Where soft or weak material is encountered, over-excavation of this material and replacement with a select subgrade will be required.

Where thin layers of pavement are proposed, it is DP's experience that achieving compaction of these layers will be difficult. It is therefore recommended that where thickness of a layer is less than 100mm it can be combined with the overlying layer. For example, for Roads 3, 7 and 8 for design CBR 10% the total pavement thickness is 190mm made up of 100mm basecourse and 90mm subbase, this pavement could be constructed as a single layer of 190mm of basecourse material.

The pavement thickness design presented above is dependent on the provision and maintenance of adequate surface and subsurface drainage. In this regard, surface drainage should be designed to shed water away from the pavement and also to incorporate erosion protection measures.

The pavement thickness design presented in this report refers to minimum layer thickness; no allowance has been made for construction tolerances and the like. Any changes in overall pavement thickness between adjoining sections of road should be transitioned and not abruptly stepped.

^{*} Where a 30 mm asphalt (AC) wearing course is used the thickness of the subbase course may be reduced by the thickness of asphalt to maintain the same total pavement thickness as for bitumen seal, subject to a minimum layer thickness of 100 mm.

^{*} Where asphalt is to be used as a wearing course a 7 mm prime seal should be placed over the basecourse.

[#] Minimum layer thickness is to be 100 mm for basecourse and subbase layers

It is recommended that where the new pavement abuts the existing pavement, it should be benched / keyed in a minimum width of 0.3 m. Vertical interface / joints between the new and existing sections of pavements should not be located within wheel paths.

14.1.8.6 Material Quality and Compaction Requirements

Recommended pavement material quality and compaction requirements are presented in Table 19below.

Table 19: Material Quality and Compaction Requirements

Pavement Layer	Material Quality	Compaction Requirements
Asphalt	Refer RTA R116	RTA R116
Basecourse	CBR >95%, 1% <pi 15<="" <6%,="" c242.3="" comply="" of="" ref="" table="" td="" with=""><td>Compact to at least 98% dry density ratio Modified (AS 1289.5.2.1)</td></pi>	Compact to at least 98% dry density ratio Modified (AS 1289.5.2.1)
Subbase	PI <12%. Comply with Table C242.4 of Ref 15	Compact to at least 95% dry density ratio Modified (AS 1289.5.2.1)
Select Subgrade	Soaked CBR >15%	Compact to 100% dry density ratio Standard (AS 1289.5.1.1)
Subgrade	Refer to section 14.1.8.2 of this Report	See comments below about compacting subgrade where applicable and if so, Compact to at least 100% dry density ratio Standard (AS 1289.5.1.1)

Due to the potential for poor constructability associated with softening of the clay subgrade soils by moisture, it may be necessary to place the select subgrade layer immediately over the natural clay, without compaction of the subgrade. If excessive moisture content is encountered within the clay subgrade soils, they should not be test rolled and test rolling should only be undertaken at the top of select subgrade layer.

It should be noted that the placement of the select layer is required for both constructability and design purposes. In the former case, it is to act as a bridging layer over the clay subgrade (with high moisture content) and hence facilitate construction and compaction of the overlying pavement layers.

14.1.8.7 Earthworks and Subgrade Preparation

Subgrade preparation for the proposed pavement construction should include the following measures:

- Excavate to design subgrade level;
- Remove any additional deleterious materials;
- Inspect subgrade soils to assess moisture conditions;

- Test roll the surface in order to determine any soft zones and assess moisture condition:
- If excess moisture conditions are encountered, test rolling should be stopped immediately and not undertaken on subgrade soils;
- Any soft / wet areas should be excavated and replaced with approved compacted fill (select subgrade);
- The design subgrade level in pavement areas should be compacted to at least 100% dry density ratio Standard (AS 1289.5.1.1) within –4% (dry) to -1% (dry) of OMC where OMC is the standard optimum moisture content, provided the clay subgrade is in a suitably dry condition which allows access for construction equipment and does not rut / heave;
- If excessively wet subgrade is encountered, it should not be compacted, and a select layer should be placed over the subgrade to allow compaction of overlying pavement layers;
- Select fill material should be placed in near horizontal layers not exceeding 300 mm loose thickness. The material should be compacted to at least 100% dry density ratio Standard, by AS 1289.5.1.1 within -4% of OMC to OMC, for granular materials;
- Pavement layers compacted as per Section, 14.1.8.6 of this report;
- The amount of subgrade area exposed at once should be minimised to avoid exposure
 to adverse weather conditions during construction, if subgrade is exposed to adverse
 weather conditions then some additional removal of material may be required before
 placing fill can continue;
- Maximum batter slopes of 1V:3H are recommended for proposed long term cut or fill batters. Batters up to 1V:2H would be stable but a flatter slope is recommended to allow access for maintenance purposes.

Geotechnical inspections and testing should be undertaken during construction in accordance with AS 3798-2007 (Ref 11).

Geotechnical inspection, compaction testing and test rolling of all pavements are recommended. Geotechnical inspection of subgrade soils prior to test rolling is recommended.

14.1.9 Retaining Walls

Details of specific retaining wall locations and dimensions have not yet been advised to Douglas Partners. Specific geotechnical assessment should be undertaken at the design phase of the project. The following general comments could be adopted for preliminary design of retaining walls.

For permanent retaining walls, where the wall will be free to deflect, design should be based on "active" (K_a) earth pressure coefficients, assuming a triangular earth pressure distribution. This would comprise any non-propped or laterally un-restrained walls (e.g. cantilever type walls).

Where structures or services are near the crest, or if the retaining walls are laterally restrained by the structure and not free to deflect, retaining wall design should be based on "at-rest" (K_o) earth pressure coefficients.

The suggested long term (permanent) design soil parameters for ultimate load conditions are shown in Table 20 below. The earth pressure coefficients are for level backfill. Any additional surcharge loads, including those imposed by inclined slopes behind the wall, during or after construction, should be accounted for in design.

Table 20: Geotechnical Parameters for Retaining Structures

Parameter	Symbol	Engineered Fill (clay) and/or Natural Stiff or Better Clay
Bulk Density (kN/m³)	γ	20
Effective Cohesion (kPa)	C'	5
Angle of Friction (degrees)	Φ'	25°
Active Earth pressure coefficient – cantilever design (free to deflect)	K _a	0.4
At-rest earth pressure coefficient – propped/restrained wall	K _o	0.6
Passive earth pressure coefficient	Kp	2.5

Retaining walls not designed for hydrostatic pressure should include free draining single size (10 mm single size gravel or coarser) aggregate backfill at the rear of the wall, with slotted drainage pipe at the base of the backfill. The pipes should discharge to the stormwater drainage system. The backfill should be encapsulated within geotextile fabric.

Retaining wall footings should be founded in the very stiff to hard clay or weathered bedrock and should be proportioned for a maximum allowable bearing pressure of 150 kPa.

Specific inspections of toes and walls of retaining walls should be undertaken during construction.

14.1.10 Suitability of Reuse of Onsite Materials

The testing undertaken on existing natural materials, which consisted of silty clay, silty sandy clay and claystone, indicated CBR results of 5%, 6%, 7%, and 17%. From these results some material can be used for select subgrade and general lot fill. Use of such materials will require careful selection and quality control at the source.

Excavated rock material won from site could be used as select fill subject to CBR testing to confirm conformance to CBR ≥ 15% (as per tables above). Maximum particle size of 100 mm for excavated rock is recommended for use in engineered fill.

Clay materials won from site excavations should be used with caution as placement of this material on lots could adversely affect the site classification for filled lots.

14.1.11 Lot Fill / Existing Dam

The following procedure is recommended for general lot filling and filling/decommissioning of the existing dam:

- Drain existing dam and remove all topsoil and deleterious material, such as overly wet soil:
- Proof roll the excavated surface to detect for soft spots, remove soft spots and replace with compacted approved filling;
- Approved filling should be placed in layers not exceeding 200 mm loose thickness. The
 material should be compacted to a dry density ratio within the range from 98% Standard
 to 102% Standard at a moisture content within the range ±2% of Optimum Moisture
 Content (OMC) under Level 1 Earthworks inspection and testing as defined in AS
 3798 2007 (Ref 11).

Clay material won from site excavations should not be used for select fill material in pavement construction and should be used with caution as general lot fill. Clay material won from around the area of test pits TP34, TP35 and TP39 is high plasticity with low 'wet strength' and should not be used for general lot fill, as this would adversely affect the site classification of the lots and the design subgrade CBR used for the pavement thickness design.

14.2 Contamination

14.2.1 Assessment of Contamination

Soil chemical analysis results were within the health based criteria for residential land use (i.e. HIL A and HSL A).

Contaminant concentrations of the samples tested were also within the adopted ecological based assessment criteria (i.e. EIL and ESL).

Contaminant concentrations of the samples tested were within 'General Solid Waste' criteria for disposal to landfill.

The results of subsurface investigation together with preliminary laboratory test results indicated the general absence of gross contamination at the locations tested.

Based on the results of the brief site history review, the site inspection and the results of preliminary laboratory testing of soils, the potential for gross contamination across the site is considered to be low.

Inspection and possible additional testing of stockpiled filling within the south-eastern portion of Stage 1 should be conducted during development to confirm the geotechnical and contamination suitability for reuse

The Stage 1 site area is considered to be suitable for the proposed residential development from a soil contamination perspective.

If soils containing anthropogenic inclusions or staining/odours, or soils other than those found on the site during the assessment are encountered during construction, advice should be obtained from this office.

14.3 Salinity

The results of the preliminary assessment indicated the following with respect to potential soil salinity at the site:

- The Department of Lands website indicates the absence of mapped dryland or urban salinity indicators or salinity hazards across the site;
- Subsurface conditions typically comprise clayey soils underlain by shallow bedrock across the site;
- EC testing of surface waters encountered on the site indicate waters are fresh;
- EC testing indicated both upper topsoils and underlying clay soils as being non-saline;
- No obvious indicators of salinity (e.g. salt scalds, plant distress) were observed during the site inspection.

Based on the above results, it is considered that the site poses a low salinity risk. It is recommended, however, that future design and construction should be undertaken with respect to good practices as detailed in Reference 7 to minimise the potential for saline impact to occur. Typical construction practices include:

- Correctly installing a damp-proof course or equivalent within each building;
- Providing adequate floor ventilation beneath buildings if they are constructed on bearers and joists;
- Maintaining the natural water balance and maintaining good drainage to prevent rises in ground water levels;
- Maintaining good drainage and minimising excessive infiltration;
- Ensuring that paths which are provided around buildings slope away from the building;
- Careful design of landscaping and landscape watering methods;
- Adequate drainage provided behind retaining walls;
- Regular monitoring of pipes, etc. for leaks.

Most of the above features are consistent with the guidelines AS 2870-2011 (Ref 9) for standard non saline sites.

For the construction of roads the following is recommended:

- Minimise ponding of water and the concentration of surface run-off;
- Careful selection of construction materials to minimise salt content and to maximise compaction

References

- Douglas Partners Pty Ltd "Report on Geotechnical, Preliminary Contamination and Salinity Investigation, Proposed North Shearwater Residential Subdivision, Stage 1 – Durness Station, Off Viney Creek Road, Tea Gardens", Project 81259.00, Dated 12 April 2013.
- NSW EPA Contaminated Sites. "Guidelines for Consultants Reporting on Contaminated Sites", August 2011.
- Coffey Geotechnics Pty Ltd "North Shearwater Land Capability Study, Preliminary Environmental Site Assessment, Viney Creek Road, Tea Gardens", prepared for GeoLINK, reference GEOTWARA20562AB-AC, dated 1 September 2008.
- 4. Coffey Geotechnics Pty Ltd, "North Shearwater Land Capability Study, Geotechnical Assessment, Viney Creek Road, Tea Gardens", prepared for GeoLINK, reference GEOTWARA20562AB-AD, dated 1 September 2008.
- 5. National Environment Protection Council (2013), 'National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013', 11 April 2013.
- 6. NSW EPA, "Waste Classification Guidelines Part 1: Classifying Waste", November 2014
- 7. Department of Land and Water Conservation, "Site Investigations for Urban Salinity", 2002.
- 8. Australian Geomechanics Society, *Practice Note Guidelines for Landslide Risk Management*, March 2007.
- 9. Australian Standard AS 2870–2011, "Residential slabs and footings", Standards Australia, January 2011.
- 10. Cement Concrete & Aggregates Australia, "Articulated Walling", TN61, August 2008.
- 11. Australian Standard AS 3798–2007, "Guidelines on earthworks for commercial and residential developments", Standards Australia, March 2007.
- 12. Greater Taree City Council "Development Design Specification, D1, Geometric Road Design (Urban and Rural)", AUS-SPEC, January 2006.
- 13. Greater Taree City Council "Development Design Specification, D2, Pavement Design", AUS-SPEC, January 2006
- 14. "Guide to Pavement Technology, Part 2: Pavement Structural Design", Austroads Publication No AGPT02-17, Fourth Edition, December 2017.
- 15. Greater Taree City Council "Development Construction Specification, C242 Flexible Pavements", AUS-SPEC, July 1997.

15. Limitations

Douglas Partners Pty Ltd (DP) has prepared this report for this project at Viney Creek Road, Tea Gardens, prepared for Wolin Investments Pty Ltd, with reference to DP's proposal dated 22 January 2018 and acceptance received from Andrew Osborne dated 15 February 2018. The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of Wolin Investments Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The contents of this report do not constitute formal design components such as are required, by the Health and Safety Legislation and Regulations, to be included in a Safety Report specifying the hazards likely to be encountered during construction and the controls required to mitigate risk. This design process requires risk assessment to be undertaken, with such assessment being dependent upon factors relating to likelihood of occurrence and consequences of damage to property and to life. This, in turn, requires project data and analysis presently beyond the knowledge and project role respectively of DP. DP may be able, however, to assist the client in carrying out a risk assessment of potential hazards contained in the Comments section of this report, as an extension to the current scope of works, if so requested, and provided that suitable additional information is made available to DP. Any such risk assessment would, however, be necessarily restricted to the environmental / geotechnical components set out in this report and to their application by the project designers to project design, construction, maintenance and demolition.

Douglas Partners (DP) has prepared this report (or services) for this project in accordance with DP's proposal NCL 180017 dated 15 January 2018 and acceptance received from Andrew Osborne of Wolin Investments Pty Ltd dated 15 February 2018. The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of Wolin Investments Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The contents of this report do not constitute formal design components such as are required, by the Health and Safety Legislation and Regulations, to be included in a Safety Report specifying the hazards likely to be encountered during construction and the controls required to mitigate risk. This design process requires risk assessment to be undertaken, with such assessment being dependent upon factors relating to likelihood of occurrence and consequences of damage to property and to life. This, in turn, requires project data and analysis presently beyond the knowledge and project role respectively of DP. DP may be able, however, to assist the client in carrying out a risk assessment of potential hazards contained in the Comments section of this report, as an extension to the current scope of works, if so requested, and provided that suitable additional information is made available to DP. Any such risk assessment would, however, be necessarily restricted to the geotechnical / environmental components set out in this report and to their application by the project designers to project design, construction, maintenance and demolition.

Douglas Partners Pty Ltd

Appendix A

CSIRO – BTF 18
Good Hillside Construction Practice – LR8
About This Report
Sampling Methods
Soil Descriptions
Rock Descriptions
Symbols and Abbreviations

Foundation Maintenance and Footing Performance: A Homeowner's Guide

PUBLISHING

BTF 18-2011 replaces Information Sheet 10/91

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.

Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870-2011, the Residential Slab and Footing Code.

Causes of Movement

Settlement due to construction

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed
 on its foundation soil, as a result of compaction of the soil under
 the weight of the structure. The cohesive quality of clay soil
 mitigates against this, but granular (particularly sandy) soil is
 susceptible.
- Consolidation settlement is a feature of clay soil and may take
 place because of the expulsion of moisture from the soil or because
 of the soil's lack of resistance to local compressive or shear stresses.
 This will usually take place during the first few months after
 construction, but has been known to take many years in
 exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

Erosion

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

Saturation

This is particularly a problem in clay soils. Saturation creates a bog-like suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume, particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

Seasonal swelling and shrinkage of soil

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.

In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

可以其实	GENERAL DEFINITIONS OF SITE CLASSES				
Class	Foundation				
A	Most sand and rock sites with little or no ground movement from moisture changes				
S	Slightly reactive clay sites, which may experience only slight ground movement from moisture changes				
M	Moderately reactive clay or silt sites, which may experience moderate ground movement from moisture changes				
H1	Highly reactive clay sites, which may experience high ground movement from moisture changes				
H2	Highly reactive clay sites, which may experience very high ground movement from moisture changes				
Е	Extremely reactive sites, which may experience extreme ground movement from moisture changes				

Note

- 1. Where controlled fill has been used, the site may be classified A to E according to the type of fill used.
- 2. Filled sites. Class P is used for sites which include soft fills, such as clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soil subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise.
- 3. Where deep-seated moisture changes exist on sites at depths of 3 m or greater, further classification is needed for Classes M to E (M-D, H1-D, H2-D and E-D).

Tree root growth

Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

Unevenness of Movement

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- Differing compaction of foundation soil prior to construction.
- Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure.

Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

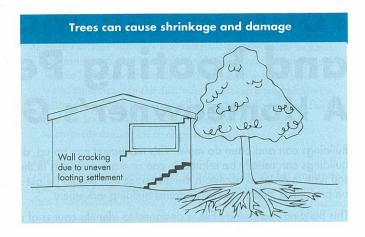
Effects of Uneven Soil Movement on Structures

Erosion and saturation

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/ below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).

Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.


Seasonal swelling/shrinkage in clay

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the

external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical – i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred.

The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation causes a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

Water Service and Drainage

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem. Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

• Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.

- · Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870-2011.

AS 2870-2011 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

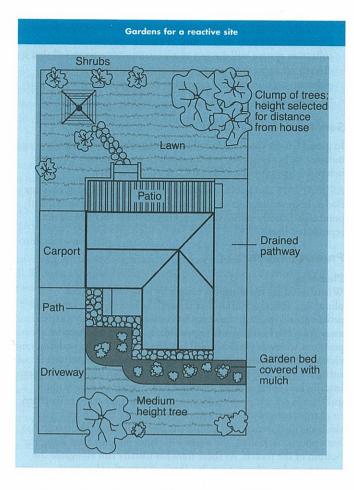
Prevention/Cure

Plumbing

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.


It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.

Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving should

Description of typical damage and required repair	Approximate crack width limit (see Note 3)	Damage category
Hairline cracks	<0.1 mm	0
Fine cracks which do not need repair	<1 mm	1
Cracks noticeable but easily filled. Doors and windows stick slightly.	<5 mm	2
Cracks can be repaired and possibly a small amount of wall will need to be replaced. Doors and windows stick. Service pipes can fracture. Weathertightness often impaired.	5–15 mm (or a number of cracks 3 mm or more in one group)	3
Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Window and door frames distort. Walls lean or bulge noticeably, some loss of bearing in beams. Service pipes disrupted.	15–25 mm but also depends on number of cracks	4

extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

Warning: Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

Existing trees

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

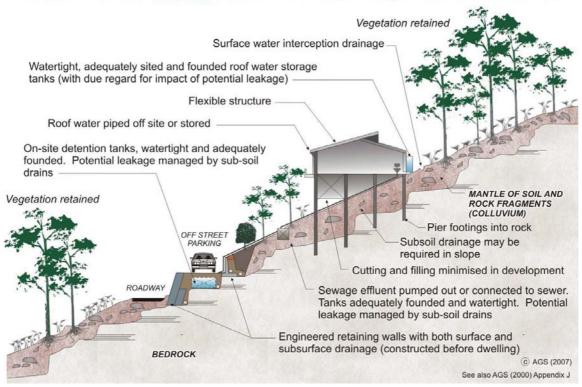
The information is advisory. It is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.

Distributed by

CSIRO PUBLISHING PO Box 1139, Collingwood 3066, Australia Tel (03) 9662 7666 Fax (03) 9662 7555 www.publish.csiro.au

Email: publishing.sales@csiro.au


© CSIRO 2003. Unauthorised copying of this Building Technology File is prohibited

AUSTRALIAN GEOGUIDE LR8 (CONSTRUCTION PRACTICE)

HILLSIDE CONSTRUCTION PRACTICE

Sensible development practices are required when building on hillsides, particularly if the hillside has more than a low risk of instability (GeoGuide LR7). Only building techniques intended to maintain, or reduce, the overall level of landslide risk should be considered. Examples of good hillside construction practice are illustrated below.

EXAMPLES OF GOOD HILLSIDE CONSTRUCTION PRACTICE

WHY ARE THESE PRACTICES GOOD?

Roadways and parking areas - are paved and incorporate kerbs which prevent water discharging straight into the hillside (GeoGuide LR5).

Cuttings - are supported by retaining walls (GeoGuide LR6).

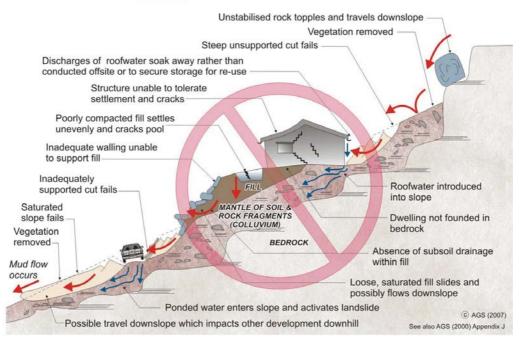
Retaining walls - are engineer designed to withstand the lateral earth pressures and surcharges expected, and include drains to prevent water pressures developing in the backfill. Where the ground slopes steeply down towards the high side of a retaining wall, the disturbing force (see GeoGuide LR6) can be two or more times that in level ground. Retaining walls must be designed taking these forces into account.

Sewage - whether treated or not is either taken away in pipes or contained in properly founded tanks so it cannot soak into the ground.

Surface water - from roofs and other hard surfaces is piped away to a suitable discharge point rather than being allowed to infiltrate into the ground. Preferably, the discharge point will be in a natural creek where ground water exits, rather than enters, the ground. Shallow, lined, drains on the surface can fulfil the same purpose (GeoGuide LR5).

Surface loads - are minimised. No fill embankments have been built. The house is a lightweight structure. Foundation loads have been taken down below the level at which a landslide is likely to occur and, preferably, to rock. This sort of construction is probably not applicable to soil slopes (GeoGuide LR3). If you are uncertain whether your site has rock near the surface, or is essentially a soil slope, you should engage a geotechnical practitioner to find out.

Flexible structures - have been used because they can tolerate a certain amount of movement with minimal signs of distress and maintain their functionality.


Vegetation clearance - on soil slopes has been kept to a reasonable minimum. Trees, and to a lesser extent smaller vegetation, take large quantities of water out of the ground every day. This lowers the ground water table, which in turn helps to maintain the stability of the slope. Large scale clearing can result in a rise in water table with a consequent increase in the likelihood of a landslide (GeoGuide LR5). An exception may have to be made to this rule on steep rock slopes where trees have little effect on the water table, but their roots pose a landslide hazard by dislodging boulders.

Possible effects of ignoring good construction practices are illustrated on page 2. Unfortunately, these poor construction practices are not as unusual as you might think and are often chosen because, on the face of it, they will save the developer, or owner, money. You should not lose sight of the fact that the cost and anguish associated with any one of the disasters illustrated, is likely to more than wipe out any apparent savings at the outset.

ADOPT GOOD PRACTICE ON HILLSIDE SITES

AUSTRALIAN GEOGUIDE LR8 (CONSTRUCTION PRACTICE)

EXAMPLES OF **POOR** HILLSIDE CONSTRUCTION PRACTICE

WHY ARE THESE PRACTICES POOR?

Roadways and parking areas - are unsurfaced and lack proper table drains (gutters) causing surface water to pond and soak into the ground.

Cut and fill - has been used to balance earthworks quantities and level the site leaving unstable cut faces and added large surface loads to the ground. Failure to compact the fill properly has led to settlement, which will probably continue for several years after completion. The house and pool have been built on the fill and have settled with it and cracked. Leakage from the cracked pool and the applied surface loads from the fill have combined to cause landslides.

Retaining walls - have been avoided, to minimise cost, and hand placed rock walls used instead. Without applying engineering design principles, the walls have failed to provide the required support to the ground and have failed, creating a very dangerous situation.

A heavy, rigid, house - has been built on shallow, conventional, footings. Not only has the brickwork cracked because of the resulting ground movements, but it has also become involved in a man-made landslide.

Soak-away drainage - has been used for sewage and surface water run-off from roofs and pavements. This water soaks into the ground and raises the water table (GeoGuide LR5). Subsoil drains that run along the contours should be avoided for the same reason. If felt necessary, subsoil drains should run steeply downhill in a chevron, or herring bone, pattern. This may conflict with the requirements for effluent and surface water disposal (GeoGuide LR9) and if so, you will need to seek professional advice.

Rock debris - from landslides higher up on the slope seems likely to pass through the site. Such locations are often referred to by geotechnical practitioners as "debris flow paths". Rock is normally even denser than ordinary fill, so even quite modest boulders are likely to weigh many tonnes and do a lot of damage once they start to roll. Boulders have been known to travel hundreds of metres downhill leaving behind a trail of destruction.

Vegetation - has been completely cleared, leading to a possible rise in the water table and increased landslide risk (GeoGuide LR5).

DON'T CUT CORNERS ON HILLSIDE SITES - OBTAIN ADVICE FROM A GEOTECHNICAL PRACTITIONER

More information relevant to your particular situation may be found in other Australian GeoGuides:

- GeoGuide LR1 Introduction
- GeoGuide LR2 Landslides
- GeoGuide LR3 Landslides in Soil
- GeoGuide LR4 Landslides in Rock
- GeoGuide LR5 Water & Drainage

- GeoGuide LR6 Retaining Walls
- GeoGuide LR7 Landslide Risk
- GeoGuide LR9 Effluent & Surface Water Disposal GeoGuide LR10 - Coastal Landslides
- GeoGuide LR11 Record Keeping

The Australian GeoGuides (LR series) are a set of publications intended for property owners; local councils; planning authorities; developers; insurers; lawyers and, in fact, anyone who lives with, or has an interest in, a natural or engineered slope, a cutting, or an excavation. They are intended to help you understand why slopes and retaining structures can be a hazard and what can be done with appropriate professional advice and local council approval (if required) to remove, reduce, or minimise the risk they represent. The GeoGuides have been prepared by the <u>Australian Geomechanics Society</u>, a specialist technical society within Engineers Australia, the national peak body for all engineering disciplines in Australia, whose members are professional geotechnical engineers and engineering geologists with a particular interest in ground engineering. The GeoGuides have been funded under the Australian governments' National Disaster Mitigation Program.

About this Report Douglas Partners O

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report;
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions.
 The potential for this will depend partly on borehole or pit spacing and sampling frequency:
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Sampling Methods Douglas Partners The sample of the samp

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low

reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

> 4,6,7 N=13

In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are based on Australian Standard AS 1726-1993, Geotechnical Site Investigations Code. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	20 - 63
Medium gravel	6 - 20
Fine gravel	2.36 - 6
Coarse sand	0.6 - 2.36
Medium sand	0.2 - 0.6
Fine sand	0.075 - 0.2

The proportions of secondary constituents of soils are described as:

Term	Proportion	Example
And	Specify	Clay (60%) and Sand (40%)
Adjective	20 - 35%	Sandy Clay
Slightly	12 - 20%	Slightly Sandy Clay
With some	5 - 12%	Clay with some sand
With a trace of	0 - 5%	Clay with a trace of sand

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	f	25 - 50
Stiff	st	50 - 100
Very stiff	vst	100 - 200
Hard	h	>200

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	SPT N value	CPT qc value (MPa)
Very loose	vl	<4	<2
Loose	1	4 - 10	2 -5
Medium dense	md	10 - 30	5 - 15
Dense	d	30 - 50	15 - 25
Very dense	vd	>50	>25

Soil Descriptions

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Transported soils formed somewhere else and transported by nature to the site; or
- Filling moved by man.

Transported soils may be further subdivided into:

- Alluvium river deposits
- Lacustrine lake deposits
- · Aeolian wind deposits
- · Littoral beach deposits
- Estuarine tidal river deposits
- Talus scree or coarse colluvium
- Slopewash or Colluvium transported downslope by gravity assisted by water.
 Often includes angular rock fragments and boulders.

Rock Strength

Rock strength is defined by the Point Load Strength Index $(Is_{(50)})$ and refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects. The test procedure is described by Australian Standard 4133.4.1 - 1993. The terms used to describe rock strength are as follows:

Term	Abbreviation	Point Load Index Is ₍₅₀₎ MPa	Approx Unconfined Compressive Strength MPa*
Extremely low	EL	<0.03	<0.6
Very low	VL	0.03 - 0.1	0.6 - 2
Low	L	0.1 - 0.3	2 - 6
Medium	М	0.3 - 1.0	6 - 20
High	Н	1 - 3	20 - 60
Very high	VH	3 - 10	60 - 200
Extremely high	EH	>10	>200

^{*} Assumes a ratio of 20:1 for UCS to Is₍₅₀₎

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description	
Extremely weathered	EW	Rock substance has soil properties, i.e. it can be remoulded and classified as a soil but the texture of the original rock is still evident.	
Highly weathered	HW	Limonite staining or bleaching affects whole of rock substance and other signs of decomposition are evident. Porosity and strength may be altered as a result of iron leaching or deposition. Colour and strength of original fresh rock is not recognisable	
Moderately weathered	MW	Staining and discolouration of rock substance has taken place	
Slightly weathered	SW	Rock substance is slightly discoloured but shows little or no change of strength from fresh rock	
Fresh stained	Fs	Rock substance unaffected by weathering but staining visible along defects	
Fresh	Fr	No signs of decomposition or staining	

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with some fragments
Fractured	Core lengths of 40-200 mm with some shorter and longer sections
Slightly Fractured	Core lengths of 200-1000 mm with some shorter and loner sections
Unbroken	Core lengths mostly > 1000 mm

Symbols & Abbreviations Douglas Partners

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

Diamond core - 81 mm dia

C Core drilling
R Rotary drilling
SFA Spiral flight augers
NMLC Diamond core - 52 mm dia
NQ Diamond core - 47 mm dia
HQ Diamond core - 63 mm dia

Water

PQ

Sampling and Testing

A Auger sample
 B Bulk sample
 D Disturbed sample
 E Environmental sample

U₅₀ Undisturbed tube sample (50mm)

W Water sample

pp Pocket penetrometer (kPa)
PID Photo ionisation detector
PL Point load strength Is(50) MPa
S Standard Penetration Test

V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

B Bedding plane
Cs Clay seam
Cv Cleavage
Cz Crushed zone
Ds Decomposed seam

F Fault
J Joint
Lam Lamination
Pt Parting
Sz Sheared Zone

V Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizontal
v vertical
sh sub-horizontal
sv sub-vertical

Coating or Infilling Term

cln clean
co coating
he healed
inf infilled
stn stained
ti tight
vn veneer

Coating Descriptor

ca calcite
cbs carbonaceous
cly clay
fe iron oxide
mn manganese
slt silty

Shape

cu curved ir irregular pl planar st stepped un undulating

Roughness

po polished ro rough sl slickensided sm smooth vr very rough

Other

fg fragmented bnd band qtz quartz

Rock Descriptions

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = <u>cumulative length of 'sound' core sections ≥ 100 mm long</u> total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or better. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes	
Thinly laminated	< 6 mm	
Laminated	6 mm to 20 mm	
Very thinly bedded	20 mm to 60 mm	
Thinly bedded	60 mm to 0.2 m	
Medium bedded	0.2 m to 0.6 m	
Thickly bedded	0.6 m to 2 m	
Very thickly bedded	> 2 m	

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

Talus

Graphic Sy	mbols for Soil and Rock		
General		Sedimentary	Rocks
	Asphalt		Boulder conglomerate
	Road base		Conglomerate
A. A. A. A D. D. D. I	Concrete		Conglomeratic sandstone
	Filling		Sandstone
Soils			Siltstone
	Topsoil		Laminite
* * * * ;	Peat		Mudstone, claystone, shale
	Clay		Coal
	Silty clay		Limestone
	Sandy clay	Metamorphic	c Rocks
	Gravelly clay		Slate, phyllite, schist
-/-/-/- -/-/-/-	Shaly clay	 - + + +	Gneiss
	Silt		Quartzite
	Clayey silt	Igneous Roc	ks
	Sandy silt	+++++	Granite
	Sand	<	Dolerite, basalt, andesite
	Clayey sand	$\begin{pmatrix} \times & \times & \times \\ \times & \times & \times \end{pmatrix}$	Dacite, epidote
	Silty sand		Tuff, breccia
	Gravel		Porphyry
	Sandy gravel		
	Cobbles, boulders		

Appendix B

Test Pit Logs (TP01 to TP24, TP24A, TP25 to TP29, TP31 to TP43)

Test Pit Logs (Pits 101 to 107)

Dynamic Penetrometer Test Results

CLIENT: Cardno Pty Ltd SURFACE LEVEL: 63.5m* AHD PIT No: TP01

PROJECT: North Shearwater Residential Subdivision-Stage **EASTING**: 420243

LOCATION: Off Viney Creek Road, Tea Gardens

NORTHING: 6389034

PROJECT No: 81259

DATE: 6/3/2013

SHEET 1 OF 1

Depth	Description	hic				& In Situ Testing	_	Dynamic Penetrometer Test
(m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20
<u> </u>	TOPSOIL - Loose, brown silty fine grained sandy topsoil with abundant rootlets, moist		_D_	0.1	0,		-	
- 0.2	CLAY - Stiff, brown and orange clay, M>Wp		B D	0.25		pp = 150-250	-	
0.35 - 0.42	CLAYSTONE - (Low strength) highly to moderately weathered, orange claystone with some fine to coarse grained sand						-	
-	From 0.4m, (high strength) slightly weathered, grey Pit discontinued at 0.42m, refusal							
<u>-</u>							-	
·1							-	-1
							-	
							-	
							•	
							_	
-2							-	-2
							-	
							-	

RIG: Backhoe LOGGED: Fulham SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample G G Sas sample PID Photo ionisation detector (ppm)

B Bulk sample P Piston sample PL(A) Point load axial test is(50) (MPa)

BLK Block sample U, Tube sample (K mm dia.)

C Core drilling W Water sample PL(D) Point load diametral test is(50) (MPa)

C Core drilling W Water sample P Pocket penetrometer (kPa)

D Disturbed sample Water seep S S Standard penetration test

E Environmental sample Water level V Shear vane (kPa)

SURFACE LEVEL: 59.5m* AHD **PIT No:** TP02 **CLIENT:** Cardno Pty Ltd

PROJECT: North Shearwater Residential Subdivision-Stage **EASTING**: 420298 **PROJECT No: 81259 NORTHING:** 6388983 **DATE:** 6/3/2013 LOCATION: Off Viney Creek Road, Tea Gardens SHEET 1 OF 1

Depth	Description	ohic g				& In Situ Testing	<u> </u>	Dynamic Per	netrometer Test
(m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	(blows p	er 150mm)
	TOPSOIL - Loose to medium dense, brown silty fine grained sandy topsoil with abundant rootlets, damp		D	0.1	0)		-		
0.2	CLAYEY SAND - Firm to stiff, brown fine to medium grained clayey sand, damp		D	0.3 0.35			-		
0.55	CLAY - Stiff, brown clay, slightly fine to medium grained sandy, M>Wp		U ₅₀			pp = 150-200	-		
0.65	CLAYSTONE - (Medium strength), moderately		D ²	0.65			-		
0.7	CLAYSTONE - (Medium strength), moderately weathered, orange and grey claystone with some fine to coarse grained sand Pit discontinued at 0.7m, refusal	_					-		
1							-	-1	
							_		
							-		
							-		
							-		
							_		
2							-	2	
							-		
							-		

LOGGED: Fulham RIG: Backhoe **SURVEY DATUM: MGA94**

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample EING & IN STOTESTING
G Gas sample
P Piston sample (x mm dia.)
U, Tube sample (x mm dia.)
W Water sample
Vater seep
Water level

G LEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

CLIENT: Cardno Pty Ltd SURFACE LEVEL: 53.0m* AHD PIT No: TP03

PROJECT: North Shearwater Residential Subdivision-Stage **EASTING**: 420365 PROJECT No: 81259 LOCATION: Off Viney Creek Road, Tea Gardens NORTHING: 6389016 DATE: 6/3/2013 SHEET 1 OF 1

	D- "	Description	jc -		Sam		& In Situ Testing		Dynamia Danatramatar Tart
R	Depth (m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
		TOPSOIL - Loose, brown, silty fine grained sandy topsoil with abundant rootlets, moist		D	0.1	S			5 10 15 20
	0.15	SILTY CLAY - Firm, grey silty clay with some fine to medium grained sand, M>Wp	11/1/		0.2		00		-
	- 0.4	CLAY - Stiff, brown clay, trace to some fine to medium	1/1/	D, B	0.3		pp = 80		
	-	grained sand, with some claystone cobbles up to 100mm, M>Wp		D	0.5		pp = 200		
	- 0.65 -	CLAYSTONE - (Medium to high strength) slightly weathered, grey claystone Pit discontinued at 0.65m, refusal							
	-	rit discontinued at 0.65m, refusal							
	- -1								-1
	-								
	-								
	-								
	-								
	-								
	-								
	- -2								-2
	-								
	-								
	-								
	-								-
	-								
	-								
	ļ								

RIG: Backhoe LOGGED: Fulham SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
B Bulk sample
C Core drilling
C Core drilling
D Disturbed sample
E Environmental sample
W Water sample
W Water sample
W Water level

GLEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

CLIENT: Cardno Pty Ltd SURFACE LEVEL: 49.0m* AHD PIT No: TP04

PROJECT: North Shearwater Residential Subdivision-Stage **EASTING**: 420421 PROJECT No: 81259 LOCATION: Off Viney Creek Road, Tea Gardens NORTHING: 6388968 DATE: 6/3/2013 SHEET 1 OF 1

		Description	.je		Sam		& In Situ Testing	_	D	.	T
R	Depth (m)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Dynamic F (blows	per 150	mm)
		Strata	10		De	Sar	Comments		5 1	0 15	20
	0.15	TOPSOIL - Loose, brown silty fine grained sandy topsoil with abundant rootlets and trace gravel, damp		D	0.1				-		
	0.15	SILTY CLAY - Stiff, dark brown silty clay with trace fine grained sand, M>Wp							- :		
	-			D	0.3		pp = 100-150		. L		
	_								- :		:
	0.45	CLAY - Stiff, grey/brown clay with some silt, some claystone cobbles, M>Wp							.]		:
	-	ciaystorie cobbles, ivi>vvp			0.6				-		
	_			B D	~ 0.7		pp = 150				
				D-/	0.8		FF 133		_		:
					0.0					:	:
	-1 1.0 1.05								-1		:
	_	Pit discontinued at 1.05m, refusal							- :		:
	_								-		:
	_								- :		:
	_								-		:
	_								-		
	_								-		
	-								-		:
	-								-		
									. :		
	-2								-2		:
	[2								-2 :		
											:
	-										:
	_								-		
	_								. :		
	_								- :		:
	_								-		:
	_								-		
											:
											:
											:

RIG: Backhoe LOGGED: Fulham SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample G G Gas sample PlD Photo ionisation detector (ppm)

B Bulk sample P Piston sample PL(A) Point load axial test Is(50) (MPa)

C Core drilling W Water sample PL(D) Point load diametral test Is(50) (MPa)

C Core drilling V Water sample PlD PlD Photo ionisation detector (ppm)

PL(A) Point load daxial test Is(50) (MPa)

PL(D) Point load diametral test Is(50) (MPa)

PL(D) Point load diametr

SURFACE LEVEL: 47.0m* AHD PIT No: TP05 **CLIENT:** Cardno Pty Ltd

North Shearwater Residential Subdivision-Stage **EASTING**: 420461 PROJECT: **PROJECT No: 81259** LOCATION: Off Viney Creek Road, Tea Gardens **NORTHING:** 6388976 **DATE:** 6/3/2013

	Description	U		Sam	pling 8	& In Situ Testing		
교 Depth (m)	of	Graphic Log					Water	Dynamic Penetrometer Test (blows per mm)
(111)	Strata	P.D.	Type	Depth	Sample	Results & Comments	>	5 10 15 20
- 0.1	TOPSOIL - Very loose, brown silty fine grained sandy topsoil with abundant rootlets, (dark grey in parts), wet to saturated SANDSTONE BOULDERS - (High strength) moderately weathered, grey fine to medium grained sandstone boulders with some fine to medium grained sandy clay, saturated	000000000000000000000000000000000000000	D	0.1				
-1	From 0.5m, browner clay		D	0.5			Ā	-1
1.2	Pit discontinued at 1.2m, collapsing	NCAC						
-2								-2

RIG: Backhoe LOGGED: Fulham **SURVEY DATUM: MGA94**

WATER OBSERVATIONS: Free groundwater observed at 1.13m, seepage at 0.0m

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample LING & IN STOTESTING
G Gas sample
P Piston sample (x mm dia.)
W tuse sample (x mm dia.)
W Water sample
Water seep
Water level

G LEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

☐ Sand Penetrometer AS1289.6.3.3 ☑ Cone Penetrometer AS1289.6.3.2

SURFACE LEVEL: 50.5m* AHD PIT No: TP06 **CLIENT:** Cardno Pty Ltd

North Shearwater Residential Subdivision-Stage **EASTING**: 420473 PROJECT: **PROJECT No: 81259** LOCATION: Off Viney Creek Road, Tea Gardens **NORTHING:** 6389002 **DATE:** 6/3/2013

Depth of Strata TOPSOIL-Loose brown elliy line grained sandy tropsol with abondart resides, damp. SANDY CLAY CLAYET SAND - Firm to stiff, brown, by May Clay Clay Gally (day Sand, weathered, grey with some drainge daystone) OLA CLAYSTONE - (Modium strength) moderately weathered, grey with some orange daystone Pit discontinued at 0.4m, refusal			Description Sampling & In Situ Testing					_	D	- D		- T+	
TOPSOIL - Loose, brown silty fine grained sandy topsoil with abundant rootlets, damp Outside the same of the same	곱	Depth (m)	UI UI	raph	/be	pth	nple	Results &	Wate	(blo	ws per	150mm	1)
SANDY CLAY/ CLAYFY SAND - Firm to stiff, brown, fine to medium grained sandy clay / clayey sand, M-Wp O.35 O.44 CLAYSTONE - (Medium strength) moderately weathered, grey with some orange claystone Pit discontinued at 0.4m, refusal				0	F	۵	Sar	Comments		5	10	15	20
SANDY CLAY / CLAYFY SAND - Firm to stiff, brown, fine to medium grained sandy clay / clayey sand, ms-wp O.335 O.44 CLAYSTONE - (Medium strength) moderately weathered, grey with some orange claystone Pit discontinued at 0.4m, refusal		0.1	TOPSOIL - Loose, brown silty fine grained sandy topsoil with abundant rootlets, damp			0.1							
CLAYSTONE - (Medium strength) moderately weathered, grey with some orange claystone Pit discontinued at 0.4m, refusal		- 0.1	SANDY CLAY / CLAYEY SAND - Firm to stiff, brown, fine to medium grained sandy clay / clayey sand,			0.15		pp = 100					
O.4 CLAYSTONE - (Medium strength) moderately weathered, grey with some orange claystone Pit discontinued at 0.4m, refusal		_	₩>vvp			0.3		pp = 100		.			
Pit discontinued at 0.4m, refusal			CLAYSTONE - (Medium strength) moderately								-	-	
			\weathered, grey with some orange claystone	/						:	:	:	:
		-	Tit discontinued at 0.4m, rerusal							- :	:	:	:
		_								-	:	:	:
		-								-			
											:		:
		_								- :	:		:
		-1								-1			
											:	:	
		_								-	:		:
		-								- :			:
											:		
		_								-	:		
		-								. :			
													:
		-								-			:
		-								-			:
										_2			:
		_								_			:
		-								-			
		_								-			:
										<u> </u>	:		
											i		
		-								-	:		
		-								- :	:	:	
											:	:	:
											:	:	:
		-								-	:		:
		_								- :	:	:	:
										. :	:		:
										:	:	:	:

RIG: Backhoe LOGGED: Fulham **SURVEY DATUM: MGA94**

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

LING & IN SITU TESTING LEGEND
G Gas sample
P Piston sample
U, Tube sample (x mm dia.)
W Water sample
V Water seep
S Standard penetration test
V Shear vane (kPa)

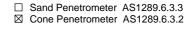
Geotechnics | Environment | Groundwater

☐ Sand Penetrometer AS1289.6.3.3

SURFACE LEVEL: 49.5m* AHD **PIT No:** TP07 **CLIENT:** Cardno Pty Ltd

PROJECT: North Shearwater Residential Subdivision-Stage **EASTING**: 420529 **PROJECT No: 81259** LOCATION: Off Viney Creek Road, Tea Gardens **NORTHING:** 6388993 **DATE:** 6/3/2013 SHEET 1 OF 1

Donth	Description	hic		Sam		& In Situ Testing	<u> </u>	Dynamic Penetromotor Toot
Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
	TOPSOIL - Very soft, brown, fine grained sandy silty topsoil with abundant rootlets, moist				ΐ			5 10 15 20
0.15	SILTY CLAY - Stiff, brown silty clay with trace to some fine to medium grained sand		D	0.2		pp = 140		1
				0.4				
0.6	CLAYSTONE - (Low to medium strength) highly to	1/1/	В	0.5		pp = 160	-	
	moderately weathered, fractured, grey and orange claystone						-	
0.8	CLAYSTONE - (Medium to high strength) slightly weathered, grey (creamy) claystone Pit discontinued at 0.9m, refusal							
1	Pit discontinued at 0.9m, refusal						-	-1
							-	
							-	
							_	
							-	
2							-	-2
							-	
							-	


LOGGED: Fulham RIG: Backhoe **SURVEY DATUM: MGA94**

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample EING & IN STOTESTING
G Gas sample
P Piston sample (x mm dia.)
U, Tube sample (x mm dia.)
W Water sample
Vater seep
Water level GLEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

SURFACE LEVEL: 49.0m* AHD PIT No: TP08 **CLIENT:** Cardno Pty Ltd

PROJECT: North Shearwater Residential Subdivision-Stage **EASTING**: 420577 **PROJECT No: 81259** LOCATION: Off Viney Creek Road, Tea Gardens **NORTHING:** 6388972 **DATE:** 6/3/2013 SHEET 1 OF 1

П		Description	. <u>Ö</u>		Sam		& In Situ Testing		
R	Depth (m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
		TOPSOIL - Loose, brown silty fine grained sandy topsoil with abundant rootlets, damp		D	0.1	S			1 10 15 20
	0.2	SANDY CLAY - Firm, grey, fine grained sandy clay with some silt, M>Wp		D	0.3		pp = 80-100		
				В	0.4		pp = 250		
	0.6	From 0.5m, very stiff							
	-1 -2 -2	CLAYSTONE - (Low to medium strength) moderately weathered, orange and grey claystone with some fine to medium grained sand From 0.61m, (medium to high strength) slightly weathered Pit discontinued at 0.62m, refusal			0.6				-1 -1 1

LOGGED: Fulham RIG: Backhoe **SURVEY DATUM: MGA94**

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample G & IN SITU TESTING
Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

GLEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

CLIENT: Cardno Pty Ltd SURFACE LEVEL: 49.0m* AHD PIT No: TP09

PROJECT: North Shearwater Residential Subdivision-Stage **EASTING**: 420571 PROJECT No: 81259 LOCATION: Off Viney Creek Road, Tea Gardens NORTHING: 6389013 DATE: 6/3/2013 SHEET 1 OF 1

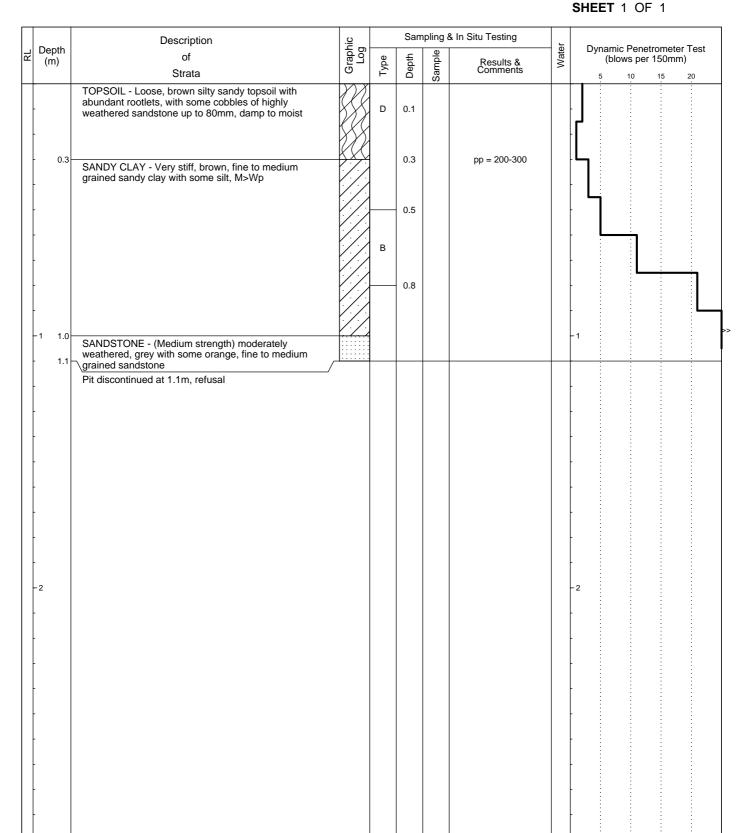
П		Description	0		Sam	pling 8	& In Situ Testing		
뮙	Depth	of	Graphic Log	Φ				Water	Dynamic Penetrometer Test (blows per 150mm)
	(m)	Strata	Gr.	Type	Depth	Sample	Results & Comments		(blows per 150mm) 5 10 15 20
		TOPSOIL - Loose, brown silty fine grained sandy topsoil, with some cobbles up to 50mm, moist to wet		D	0.15 0.2	0)	450.250		
	. 0.2	SILTY CLAY - Stiff to very stiff, brown/grey silty clay, slightly fine to medium grained sand	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		0.2		pp = 150-250		
				D B	0.4				·]
	0.6	CLAYSTONE - (Low to medium strength) highly weathered, orange claystone with some fine to medium orange grained sand			0.6				. 1
	-	From 0.69m, (high strength) slightly weathered, grey Pit discontinued at 0.7m, refusal							
	-1								-1
	-								
	-								
	-								
	-2								-2
	-								
	•								

RIG: Backhoe LOGGED: Fulham SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND


A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN SITU TESTING LEGEND
PIL(D) Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
Pp Pocket penetrometer (kPa)
S Standard penetration test
Water seep
Water seep
Water seep
Water seep
V Shear vane (kPa)

CLIENT: Cardno Pty Ltd **SURFACE LEVEL:** 56.5m* AHD **PIT No:** TP10

PROJECT: North Shearwater Residential Subdivision-Stage **EASTING**: 420644 **PROJECT No: 81259** LOCATION: Off Viney Creek Road, Tea Gardens **NORTHING:** 6389023 **DATE:** 6/3/2013

RIG: Backhoe LOGGED: Fulham **SURVEY DATUM: MGA94**

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample G Gas sample
P Piston sample (x mm dia.)
U, Tube sample (x mm dia.)
W Water sample
V Water seep
Water level

GLEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

CLIENT: Cardno Pty Ltd SURFACE LEVEL: 58.5m* AHD PIT No: TP11

PROJECT: North Shearwater Residential Subdivision-Stage **EASTING**: 420694 PROJECT No: 81259 LOCATION: Off Viney Creek Road, Tea Gardens NORTHING: 6388926 DATE: 6/3/2013

D- "	Description	jic _		Sam		& In Situ Testing		Dunami-	Donotromoto	r Toot
Depth (m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water		Penetrometer ows per mm)	r i est
0.15 - 0.25	CLAYSTONE - (Low to medium strength) highly weathered, orange claystone From 0.24m, (medium to high strength) slightly		D	0.1						
	weathered, grey Pit discontinued at 0.25m, refusal									
1								-1		
2								-2		
							-			

RIG: Backhoe LOGGED: Fulham SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample G G as sample Plot no insation detector (ppm)

B Bulk sample P Piston sample PL(A) Point load axial test Is(50) (MPa)

BLK Block sample U Tube sample (x mm dia.)

C Core drilling W Water sample P Pocket penetrometer (kPa)

D Disturbed sample D Water seep S S Standard penetration test

E Environmental sample

□ Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

SURFACE LEVEL: 59.0m* AHD PIT No: TP12 **CLIENT:** Cardno Pty Ltd

North Shearwater Residential Subdivision-Stage **EASTING**: 420761 PROJECT: **PROJECT No: 81259** LOCATION: Off Viney Creek Road, Tea Gardens **NORTHING:** 6388969 **DATE:** 6/3/2013 SHEET 1 OF 1

Sam 41.	Description	<u>:</u> e_		Sam		k In Situ Testing	<u> </u>	Dynamic Panatramatar T
Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Tes (blows per 150mm)
	Strata			۵	Sa	Comments	\perp	5 10 15 20
0.1	TOPSOIL - Loose, brown silty fine grained sandy topsoil with abundant rootlets, damp							
	SILTY CLAY - Stiff to very stiff, grey/brown silty clay with some fine to medium grained sand with some gravel, M>Wp		D	0.15 0.2		pp = 100-200		
0.4	SILTY SANDY CLAY - Stiff to very stiff, brown, fine to medium grained silty sandy clay, M>Wp (extremely low strength, extremely weathered claystone)		D B	0.4		pp = 100-200	-	
0.68 0.7	CLAYSTONE - (Medium to high strength) slightly weathered grey claystone, with some fine to medium grained sand	rvvy		-0.7-			-	
	Pit discontinued at 0.7m, refusal							
								-1
							-	
:								-2
		I		1 1			1 1	the state of the s

LOGGED: Fulham RIG: Backhoe **SURVEY DATUM: MGA94**

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

EING & IN STOTESTING
G Gas sample
P Piston sample (x mm dia.)
U, Tube sample (x mm dia.)
W Water sample
Vater seep
Water level

GLEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

SURFACE LEVEL: 51.0m* AHD **PIT No:** TP13 **CLIENT:** Cardno Pty Ltd

North Shearwater Residential Subdivision-Stage **EASTING**: 420812 PROJECT: **PROJECT No: 81259** LOCATION: Off Viney Creek Road, Tea Gardens **NORTHING:** 6388915 **DATE:** 6/3/2013 SHEET 1 OF 1

Г		Description	tion Sampling & In Situ Testing		& In Situ Testing		B B		
R	Depth (m)	of	Graphic Log	Type Depth Sample		Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)	
	-	Strata TOPSOIL - Loose to medium dense, brown silty fine grained sandy topsoil with abundant rootlets, and some gravel, damp		⊢ D,	0.1	Sa	Comments		5 10 15 20
	0.15	SANDY CLAY - Stiff, grey fine grained sandy clay with some silt, M>Wp		D U ₅₀	0.2		pp = 100		\
	- 0.4 <u>-</u> 0.42'	weathered, orange claystone with some fine to medium grained sand	<u> </u>		-0.42-				-
	-	Pit discontinued at 0.42m, refusal							
	- - - 1								-1
	-								
	-								-
	-								
	-								
	-2								-2
	-								
	-								
	-								
	-								
	_								

RIG: Backhoe LOGGED: Fulham **SURVEY DATUM: MGA94**

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample EING & IN STOTESTING
G Gas sample
P Piston sample (x mm dia.)
U, Tube sample (x mm dia.)
W Water sample
Vater seep
Water level

GLEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

SURFACE LEVEL: 54.0m* AHD **PIT No:** TP14 **CLIENT:** Cardno Pty Ltd

North Shearwater Residential Subdivision-Stage **EASTING**: 420896 PROJECT: **PROJECT No: 81259** LOCATION: Off Viney Creek Road, Tea Gardens **NORTHING:** 6388949 **DATE:** 5/3/2013

	Denth	Description	jc T		Sam		& In Situ Testing] i	Dynamia Panetrometer Test
R	Depth (m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
		TOPSOIL - Medium dense, brown, fine grained silty				Ø			5 10 15 20
	- 0.1 -	CLAYEY SAND - Medium dense, light brown, fine grained clayey sand, slightly silty, moist with some weathered sandstone cobbles		_D_ B D-⁄	0.1				
	0.35	SANDSTONE - (Very low to low strength) extremely to highly weathered, orange fine grained sandstone	(///		0.3				
	-								.
	0.75	From 0.7m, (medium to high strength) slightly weathered, grey Pit discontinued at 0.75m, refusal	:::::::						
	_	The dissolutions at 6.7 GHz, foresta							
	-1 -								-1
	-								
	_								
	_								
	-								
	_								
	-2								-2
	-								
	-								
	-								
	-								
	_								
	-								

RIG: Backhoe LOGGED: Fulham **SURVEY DATUM: MGA94**

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample EING & IN STOTESTING
G Gas sample
P Piston sample (x mm dia.)
U, Tube sample (x mm dia.)
W Water sample
Vater seep
Water level

G LEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

☐ Sand Penetrometer AS1289.6.3.3 ☑ Cone Penetrometer AS1289.6.3.2

SURFACE LEVEL: 62.0m* AHD PIT No: TP15 **CLIENT:** Cardno Pty Ltd

North Shearwater Residential Subdivision-Stage **EASTING**: 420788 PROJECT: **PROJECT No: 81259** LOCATION: Off Viney Creek Road, Tea Gardens **NORTHING:** 6389031 **DATE:** 5/3/2013 SHEET 1 OF 1

	Description	ie		Sam		In Situ Testing		D	da Dara :	trans-1-	. T
Depth (m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Dynan (b	nic Pene lows per	150mete 150mn	20 20
	TOPSOIL - Medium dense, brown silty fine grained sandy soil		D	0.05	o)			T.	:	:	:
0.15	SANDSTONE - (Medium to high strength) moderately to slightly weathered, orange and grey fine grained sandstone						-				
0.25	\sandstone / Pit discontinued at 0.25m, refusal						-	:	:	i	:
	Fit discontinued at 0.25m, refusal								:		:
											:
											:
											:
							-	:	:	:	:
							-				
								:	:	:	:
.								1			:
.								' i	:	:	:
							-	:	:	:	:
									:		:
							-				
							-	:	:	:	:
2								2	:	:	:
2								2			
									:	:	:
										:	:
								:	:		:
								:			:
											:
							-	:	:		:
							-	:			:
											:
1							1	:	:	:	:

RIG: Backhoe LOGGED: Fulham **SURVEY DATUM: MGA94**

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample EING & IN STOTESTING
G Gas sample
P Piston sample (x mm dia.)
U, Tube sample (x mm dia.)
W Water sample
Vater seep
Water level

GLEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

CLIENT: Cardno Pty Ltd SURFACE LEVEL: 60.0m* AHD PIT No: TP16

PROJECT: North Shearwater Residential Subdivision-Stage **EASTING**: 420677 PROJECT No: 81259 LOCATION: Off Viney Creek Road, Tea Gardens NORTHING: 6389089 DATE: 5/3/2013

(b) S $\overline{\Phi}$ Comments S Comments	Penetrometer Test vs per 150mm) 10 15 20
TOPSOIL - Soft to firm, dark brown, fine to medium grained sandy silty topsoil with abundant rootlets, moist to wet 0.2 SANDY CLAY - Stiff, light brown/orange, fine to medium grained sandy clay, M>Wp 0.4 CLAYEY SAND -Medium dense, light brown/orange, fine to medium grained clayey sand, damp, possible weathered sandstone 0.7 SANDSTONE - (Medium strength) moderately to slightly weathered, grey with some orange fine to medium grained sandstone Pit discontinued at 0.75m, refusal	10 15 20
TOPSOIL - Soft to firm, dark brown, fine to medium grained sandy silty topsoil with abundant rootlets, moist to wet 0.2 SANDY CLAY - Stiff, light brown/orange, fine to medium grained sandy clay, M>Wp 0.4 CLAYEY SAND -Medium dense, light brown/orange, fine to medium grained clayey sand, damp, possible weathered sandstone O.7 SANDSTONE - (Medium strength) moderately to slightly weathered, grey with some orange fine to medium grained sandstone Pit discontinued at 0.75m, refusal	
SANDY CLAY - Stiff, light brown/orange, fine to medium grained sandy clay, M>Wp 0.4 CLAYEY SAND -Medium dense, light brown/orange, fine to medium grained clayey sand, damp, possible weathered sandstone 0.7 0.7 0.75 SANDSTONE - (Medium strength) moderately to slightly weathered, grey with some orange fine to medium grained sandstone Pit discontinued at 0.75m, refusal	
CLAYEY SAND -Medium dense, light brown/orange, fine to medium grained clayey sand, damp, possible weathered sandstone 0.7 SANDSTONE - (Medium strength) moderately to slightly weathered, grey with some orange fine to medium grained sandstone Pit discontinued at 0.75m, refusal	
SANDSTONE - (Medium strength) moderately to slightly weathered, grey with some orange fine to medium grained sandstone Pit discontinued at 0.75m, refusal	
Pit discontinued at 0.75m, refusal	

RIG: Backhoe LOGGED: Fulham SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

G Gas sample PID Photo

A Auger sample
B Bulk sample
B Bulk sample
C Core drilling
C Core drilling
D Disturbed sample
E Environmental sample
Water sample
Water sample
Water sample
Water seep
Water level

GLEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

□ Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

SURFACE LEVEL: 65.0m* AHD PIT No: TP17 **CLIENT:** Cardno Pty Ltd

PROJECT: North Shearwater Residential Subdivision-Stage **EASTING**: 420747 **PROJECT No: 81259** LOCATION: Off Viney Creek Road, Tea Gardens **NORTHING:** 6389104 **DATE:** 5/3/2013 SHEET 1 OF 1

.	Description	.ie _		Sam		& In Situ Testing	ايا	Dunamia Dar street Tool
Depth (m)	of	Graphic Log	Туре	Depth	Sample	Results &	Water	Dynamic Penetrometer Test (blows per 150mm)
	Strata	Ō	Tyl	Del	San	Results & Comments		5 10 15 20
0.1	TOPSOIL - Medium dense, brown, fine grained silty sandy topsoil with abundant rootlets		D	0.05				
0.1	SILTY CLAYEY SAND - Medium dense, dark brown, fine grained silty clayey sand (possible weathered sandstone) with some cobbles of sandstone up to 100mm long, moist			0.2			-	
			U ₅₀	~ 0.4			-	
0.6 0.62	SANDSTONE - (Medium to high strength) slgihtly	<u> </u>		_0.6_			-	
	weathered, grey, fine grained sandstone Pit discontinued at 0.62m, refusal	/					-	
1								1
2							-	2
							-	

LOGGED: Fulham RIG: Backhoe **SURVEY DATUM: MGA94**

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample G & IN SITU TESTING
Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

GLEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

CLIENT: Cardno Pty Ltd SURFACE LEVEL: 61.5m* AHD PIT No: TP18

PROJECT: North Shearwater Residential Subdivision-Stage **EASTING**: 420691 PROJECT No: 81259 LOCATION: Off Viney Creek Road, Tea Gardens NORTHING: 6389191 DATE: 5/3/2013

DATE: 5/3/2013 **SHEET** 1 OF 1

Dopph of Strata TOPSOIL-Laces trons milky sandy topsoil with abundant loss of Strata			Description	.jc _		Sam		& In Situ Testing	_	D ai a Dav		T4
TOPSOIL - Loose, brown silty sandy topsoil with abundant roollets, damp to moist O.1 SANDY CLAY - Very stiff, grey/brown fine to medium grained sandy clay, M-Wp O.25 O.3 CLAYSTONE - (Medium to high strength) slightly weathered, grey claystone with some fine to medium grained sandstone Pit discontinued at 0.3m, refusal	묍	(m)		3rapt Log	ype	epth	ımple	Results &	Wate			rest
SANDY CLAY - Very stiff, grey/brown fine to medium grained sandy clay, Ma-Wp O.2 CLAYSTONE - (Medium to high strength) slightly weathered, grey claystone with some fine to medium grained sandstone Pit discontinued at 0.3m, refusal				 	-		တိ	Commente		5 10	15 2	20 :
O.25 O.3 CLAYSTONE - (Medium to high strength) slightly weathered, grey claystone with some fine to medium grained sandstone Pit discontinued at 0.3m, refusal		0.1			D							
O.3 CLAYSTONE - (Medium to high strength) slightly weathered, reycy claystone with some fine to medium grained sandstone Pit discontinued at 0.3m, refusal		-	grained sandy clay, M>Wp			0.2		pp = 250			:	
grained sandstone Pit discontinued at 0.3m, refusal			CLAYSTONE - (Medium to high strength) slightly									<u> </u>
			grained sandstone									
			Pit discontinued at 0.3m, refusal									
											:	
											:	
		_										
		-										
		-										
		-1							-	-1		
-2 -2		-										
		-										
											:	:
		-										
		-										
		-										
		-										
		-										
		-2								.2		
		-										
		-										
		-							-			
		-										
											:	

RIG: Backhoe LOGGED: Fulham SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
C G Gas sample
B Bulk Slock sample
U, Tube sample (x mm dia.)
C Core drilling
D Disturbed sample
E Environmental sample
W Water semple
Water level
Water level

LING & IN SITU TESTING LEGEND
G Gas sample
P Piston sample
U, Tube sample (x mm dia.)
W Water sample
V Water seep
S Standard penetration test
V Shear vane (kPa)

CLIENT: Cardno Pty Ltd SURFACE LEVEL: 67.0m* AHD PIT No: TP19

PROJECT: North Shearwater Residential Subdivision-Stage **EASTING**: 420642 PROJECT No: 81259 LOCATION: Off Viney Creek Road, Tea Gardens NORTHING: 6389248 DATE: 5/3/2013

_		Description	. <u>S</u>		Sam		& In Situ Testing	_	Domania Domania
ᆲ	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
_		Strata	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	F)	۵	Sar	Comments	$\perp \perp$	5 10 15 20
-		TOPSOIL - Loose, brown, fine to medium grained silty sandy topsoil with abundant rootlets, moist		D	0.05			-	
_	0.2	SILTY CLAY - Stiff to very stiff, light brown silty clay, M>Wp		D, B	0.2 0.25		pp = 200		
_	0.4	SANDSTONE - (Low strength) highly weathered.			0.35 0.4		pp = 150	-	
-	0.52	SANDSTONE - (Low strength) highly weathered, orange, fine to medium grained sandstone						1	
-	0.02	From 0.5m, (medium to high strength) slightly weathered, light grey sandstone Pit discontinued at 0.52m, refusal	1					-	
-									
-									
-									
-1									1
ł									
+								1 +	
-									
-									
-									
-2	.								2
Ī									
ł									
-								1 +	
-									
-									
†									

RIG: Backhoe LOGGED: Fulham SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

| A | Auger sample | PID | PIC | PI

G LEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

□ Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

SURFACE LEVEL: 65.0m* AHD **PIT No:** TP20 **CLIENT:** Cardno Pty Ltd

PROJECT: North Shearwater Residential Subdivision-Stage **EASTING**: 420742 **PROJECT No: 81259** LOCATION: Off Viney Creek Road, Tea Gardens **NORTHING:** 6389332 **DATE:** 5/3/2013

	D .		Description	jc -		Sam		& In Situ Testing		Dynamia Panetrameter To-t
씸	Dept (m)	n	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
			Strata	O	È	De De	Sar	Comments		5 10 15 20
).1	TOPSOIL - Loose, brown silty topsoil with abundant rootlets and some sand, moist	W	D	0.1				
	-	7. 1	SANDSTONE - (Low strength) highly to moderately weathered, light orange, fine grained sandstone with medium to high strength in parts			0.1				
	-				D	0.6			Λ	
	-1 1	.0-	From 0.9m, (medium to high strength)							
			Pit discontinued at 1.0m, refusal							2
	-									
	_									

LOGGED: Fulham RIG: Backhoe **SURVEY DATUM: MGA94**

WATER OBSERVATIONS: Seepage observed at 0.7m

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

EING & IN STOTESTING
G Gas sample
P Piston sample (x mm dia.)
U, Tube sample (x mm dia.)
W Water sample
Vater seep
Water level

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

GLEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

☐ Sand Penetrometer AS1289.6.3.3 ☑ Cone Penetrometer AS1289.6.3.2

CLIENT: Cardno Pty Ltd **SURFACE LEVEL:** 69.5m* AHD **PIT No:** TP21

PROJECT: North Shearwater Residential Subdivision-Stage **EASTING**: 420668
LOCATION: Off Viney Creek Road, Tea Gardens
NORTHING: 6389290
DATE: 5/3/2013
SHEET 1 OF 1

Darth	Description	je -		Sam		& In Situ Testing	_ _	Dynamic Ponetrometer Test
Depth (m)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
	Strata	O	Ţ		San	Comments		5 10 15 20
	TOPSOIL - Medium dense, brown, fine grained sandy silt topsoil with abundant rootlets, moist	YY)		0.0				
	silt topsoil with abundant rootlets, moist	XX	B D	-0.1				
0.0		K/Q	D					
0.2	CLAYSTONE - (Medium strength) extremely to highly weathered, dark orange claystone with rootlets in			0.2				
	weathered, dark orange claystone with rootlets in fractures							
0.45	From 0.4m, (high strength) slightly weathered, light	_===						
	grey Pit discontinued at 0.45m, refusal							
	Pit discontinued at 0.45m, refusal							
l								1 : : : :
							1 +	
2							-	2

RIG: Backhoe LOGGED: Fulham SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND
G Gas sample PID Photo

A Auger sample
B Bulk sample
B Buk Sample
B Buk Sample
C Core drilling
C C Core drilling
D Disturbed sample
E Environmental sample
W Water sample
W Water sample
W Water level

GLEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

SURFACE LEVEL: 70.0m* AHD PIT No: TP22 **CLIENT:** Cardno Pty Ltd

North Shearwater Residential Subdivision-Stage **EASTING**: 420607 PROJECT: **PROJECT No: 81259** LOCATION: Off Viney Creek Road, Tea Gardens **NORTHING:** 6389314 **DATE:** 5/3/2013 SHEET 1 OF 1

		Description	.je		Sam		& In Situ Testing		Dimensia Danatasanatas Taat
R	Depth (m)	of Out to	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
L		Strata TOPSOUL Soft brown fine to medium grained condu-	TW X	<u> </u>	۵	Sa	Comments		5 10 15 20
	-	TOPSOIL - Soft, brown, fine to medium grained sandy silty topsoil with abundant rootlets, moist		D	0.1				
	0.15	SILTY CLAY - Very stiff, grey silty clay, M>Wp	1/1/		0.2		pp = 240		- 7
	-				0.3		pp = 230		
	-			_D_/	0.4 0.45		pp = 220		-
	0.58			U ₅₀	0.58				
	0.58 0.6	SANDSTONE - (Medium to high strength) moderately to slightly weathered, grey with some orange, fine to medium grained sandstone	_						
		Pit discontinued at 0.6m, refusal							
	-								
	-1								-1
	-								-
	-								
	-								
	-								-
	-								
	-								-
	_								-
	-								
	-								
	-2								-2

RIG: Backhoe LOGGED: Fulham **SURVEY DATUM: MGA94**

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample EING & IN STOTESTING
G Gas sample
P Piston sample (x mm dia.)
U, Tube sample (x mm dia.)
W Water sample
Vater seep
Water level

GLEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

SURFACE LEVEL: 64.0m* AHD **PIT No:** TP23 **CLIENT:** Cardno Pty Ltd

North Shearwater Residential Subdivision-Stage **EASTING**: 420559 PROJECT: **PROJECT No: 81259** LOCATION: Off Viney Creek Road, Tea Gardens **NORTHING:** 6389247 **DATE:** 5/3/2013 SHEET 1 OF 1

Sant's	Description			Sam		& In Situ Testing	_ _	Dynamic Ponatromator Tast
Depth (m)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
	Strata		-		Sa	Confinents	+	5 10 15 20
	TOPSOIL - Firm, brown silty topsoil with abundant rootlets, moist		D	0.05				
		$\langle \rangle \rangle \rangle$		0.1				
							-	
0.3				0.3				L
0.3	SILTY CLAY - Stiff to very stiff, grey with some light brown silty clay, M>Wp	1/1/		0.3				
	blown sitty day, M>VVP		В	0.4		pp = 200		
			В	0.5		pp = 240		
0.65		1///		0.6		pp = 150	 	
h	SANDSTONE - (Very low to low strength) highly weathered, orange and light brown, fine grained						-	
0.75	sandstone	/ 						
	From 0.7m, (medium strength) Pit discontinued at 0.75m, refusal							
	Fit discontinued at 0.75m, refusal							
.								-1
							-	
							-	
							-	
2								-2
							-	
							-	
1				1				

LOGGED: Fulham RIG: Backhoe **SURVEY DATUM: MGA94**

WATER OBSERVATIONS: Seepage observed at 0.63m

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample EING & IN STOTESTING
G Gas sample
P Piston sample (x mm dia.)
U, Tube sample (x mm dia.)
W Water sample
Vater seep
Water level GLEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

CLIENT: Cardno Pty Ltd SURFACE LEVEL: 69.0m* AHD PIT No: TP24

PROJECT: North Shearwater Residential Subdivision-Stage **EASTING**: 420487 PROJECT No: 81259 LOCATION: Off Viney Creek Road, Tea Gardens NORTHING: 6389291 DATE: 5/3/2013

		Description	U		Sam	npling a	& In Situ Testing				
R	Depth (m)	of	Graphic Log	e C	Ę	ble	Results &	Water	Dynamic F (blo	Penetromet ws per mm	er Test)
	(***)	Strata	้อ	Туре	Depth	Sample	Results & Comments	>		0 15	20
	-	TOPSOIL - Firm, brown, fine to medium grained sandy silty topsoil with abundant rootlets, damp to moist		D	0.05				-		
	-		1888						- :		:
	0.25	SANDSTONE - (Medium strength) moderately weathered, orange, fine to medium grained sandstone							-		
	0.35	Weathered, orange, fine to medium grained sandstone Pit discontinued at 0.35m, refusal		_D_	0.35-						
	-								-		:
	-								-		
	-								- :		:
	-								-		
									. :		:
	-1								-1		
	-								-		
	-								- :		:
	-								-		
	_								. :		
	_								-		
	_								-		
	-								- :		:
	_								. :		
	-2								-2		
	[2								-2		
	-								- :		:
	-								-		
	-								- :		
	-								-		
	-								-		
	-								- :		:
	-								- :		:

RIG: Backhoe LOGGED: Fulham SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
B Buk Sample
B Buk Sample
C Core drilling
C C Core drilling
D Disturbed sample
E Environmental sample
W Water sample
W Water sample
W Water level

G LEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

□ Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

SURFACE LEVEL: 69.0m* AHD PIT No: TP24A **CLIENT:** Cardno Pty Ltd North Shearwater Residential Subdivision-Stage **EASTING**: 420490 PROJECT: **PROJECT No: 81259** LOCATION: Off Viney Creek Road, Tea Gardens **NORTHING:** 6389290 **DATE:** 5/3/2013

SHEET 1 OF 1

Signature Sign		Description	. <u>S</u>		Sam		& In Situ Testing		
TOPSOIL - Firm, brown, fine to medium grained sandy silty topsoil with abundant rootlets, damp to moist CLAY - Stiff, brown clay, slightly fine to medium grained sand, Ms-Wp CLAY - Stiff, brown clay, slightly fine to medium grained sand, Ms-Wp D	Depth (m)		raph Log	be	oth	aldı	Results &	Nate	Dynamic Penetrometer Test (blows per 150mm)
TOPSOIL - Firm, brown, fine to medium grained sandy silty topsoil with abundant rootlets, damp to moist O_2 CLAY - Stiff, brown clay, slightly fine to medium grained sand, Ms-Wp O_4 D_5 O_25 U_5 O_4 D_6 O_6 SANDSTONE - (Very low to low strength) highly to moderately weathered, orange, fine to medium grained sandstone From 1.2m, (medium to high strength) slightly weathered 1.3 Pit discontinued at 1.3m, refusal			G	_ <u>\</u>	Del	San	Comments		
CLAY - Stiff, brown clay, slightly fine to medium grained sand, M-Wp 0.4 SANDSTONE - (Very low to low strength) highly to moderately weathered, orange, fine to medium grained sandstone From 1.2m, (medium to high strength) slightly weathered 1.3 Pit discontinued at 1.3m, refusal	-	TOPSOIL - Firm, brown, fine to medium grained sandy silty topsoil with abundant rootlets, damp to moist	8					-	
SANDSTONE - (Very low to low strength) highly to moderately weathered, orange, fine to medium grained sandstone From 1.2m, (medium to high strength) slightly weathered Pit discontinued at 1.3m, refusal	0.2	CLAY - Stiff, brown clay, slightly fine to medium grained sand, M>Wp		_D_	0.25				
SANDSTONE - (Very low to low strength) highly to moderately weathered, orange, fine to medium grained sandstone From 1.2m, (medium to high strength) slightly weathered Pit discontinued at 1.3m, refusal	-			U ₅₀	0.4		pp = 120		
From 1.2m, (medium to high strength) slightly weathered 1.3 Pit discontinued at 1.3m, refusal	0.6	SANDSTONE - (Very low to low strength) highly to			0.6				
From 1.2m, (medium to high strength) slightly weathered Pit discontinued at 1.3m, refusal	-	moderately weathered, orange, fine to medium grained sandstone						-	
From 1.2m, (medium to high strength) slightly weathered Pit discontinued at 1.3m, refusal	- -1								-1
1.3 Pit discontinued at 1.3m, refusal	-							-	
Pit discontinued at 1.3m, refusal	1.0	From 1.2m, (medium to high strength) slightly weathered							
	1.3	Pit discontinued at 1.3m, refusal							
	-								
	-								
	-								
	.								
	-2								-2

RIG: Backhoe LOGGED: Fulham **SURVEY DATUM: MGA94**

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

LING & IN STOTESTING
G Gas sample
P Piston sample (x mm dia.)
W tuse sample (x mm dia.)
W Water sample
Water seep
Water level

G LEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

SURFACE LEVEL: 68.0m* AHD PIT No: TP25 **CLIENT:** Cardno Pty Ltd

North Shearwater Residential Subdivision-Stage **EASTING**: 420439 PROJECT: **PROJECT No:** 81259 LOCATION: Off Viney Creek Road, Tea Gardens **NORTHING:** 6389226 **DATE:** 6/3/2013 SHEET 1 OF 1

П		Description	U		Sam	pling &	& In Situ Testing		
⊿	Depth (m)	of	Graphic Log	φ				Water	Dynamic Penetrometer Test (blows per 150mm)
	(111)	Strata	9. J	Type	Depth	Sample	Results & Comments	>	5 10 15 20
-		TOPSOIL - Medium dense, brown silty fine grained sandy topsoil with some weathered sandstone, damp		D	0.1	- 0,			
_	0.2	SANDY CLAY - Firm to stiff, brown, fine to medium grained sandy clay, M>Wp			0.3 0.35		pp = 80 pp = 100		
-		From 0.4m, very stiff		D	0.4		pp = 280		 -
-					0.6		pp = 350		
- 1	0.8	SANDSTONE - (Very low to low strength) highly to moderately weathered, orange, fine to medium grained sandstone From 0.95m to 1.1m, (medium to high strength) slightly weathered, grey sandstone		D	0.9				-1
-	1.15-	Pit discontinued at 1.15m, refusal							
-									
-									
-									
-2	2								-2
-									

RIG: Backhoe LOGGED: Fulham **SURVEY DATUM: MGA94**

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample EING & IN STOTESTING
G Gas sample
P Piston sample (x mm dia.)
U, Tube sample (x mm dia.)
W Water sample
Vater seep
Water level

GLEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

CLIENT: Cardno Pty Ltd SURFACE LEVEL: 67.5m* AHD PIT No: TP26

PROJECT: North Shearwater Residential Subdivision-Stage **EASTING**: 420353

LOCATION: Off Viney Creek Road, Tea Gardens

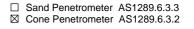
NORTHING: 6389250

PROJECT No: 81259

DATE: 6/3/2013

SHEET 1 OF 1

		Description	<u>.</u>		Sam	pling &	& In Situ Testing		
뭅	Depth (m)	of	Graphic Log	e e	th	ble	Resulte &	Water	Dynamic Penetrometer Test (blows per 150mm)
	(111)	Strata	<u>9</u>	Туре	Depth	Sample	Results & Comments	>	5 10 15 20
		TOPSOIL - Medium dense, brown silty fine grained sandy topsoil with abundant rootlets, damp		D	0.1				
	0.2	SILTY CLAY - Very stiff to hard, red and brown silty clay with some fine to medium grained sand, M>Wp	11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	U ₅₀	~ 0.3				
	-				0.5		pp = 400-450		
	_			D	0.7		pp = 350-400		
					0.6				
	-1 1.0 -	CLAYSTONE - (Very low strength) extremely weathered, red, orange and grey claystone							-2
		CLAYSTONE - (Medium to high strength) slightly Weathered claystone Pit discontinued at 2.1m, refusal							


RIG: Backhoe LOGGED: Fulham SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample G G as sample PlD Photo ionisation detector (ppm)
B B Bulk sample P Piston sample PL(A) Point load axial test Is(50) (MPa)
BLK Block sample U J Tube sample (K mm dia.)
C Core drilling W Water sample Pp Pocket penetrometer (kPa)
D Disturbed sample Water seep S S Standard penetration test
E Environmental sample Water level V Shear vane (kPa)

CLIENT: Cardno Pty Ltd SURFACE LEVEL: 60.0m* AHD PIT No: TP27

PROJECT: North Shearwater Residential Subdivision-Stage **EASTING**: 420348 PROJECT No: 81259 LOCATION: Off Viney Creek Road, Tea Gardens NORTHING: 6389165 DATE: 6/3/2013 SHEET 1 OF 1

П		Description:	Τ,,		Sam	nolina s	& In Situ Testing		
RL	Depth	Description of	Graphic Log	<i>a</i>				Water	Dynamic Penetrometer Test (blows per 150mm)
LE.	(m)	Strata	Gra	Туре	Depth	Sample	Results & Comments	×	(blows per 150mm) 5 10 15 20
		TOPSOIL - Loose, brown silty fine grained sandy topsoil with abundant rootlets		D	0.1				
	. 0.2	SILTY CLAY - Firm to stiff, brown silty clay with some fine grained sand, M>Wp	11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1		0.3		pp = 80-150		
	- 0.5	CLAY - Hard, red clay with some weathered sandstone cobbles, M=Wp			0.5				
				D	0.7		pp = 400-450		
	-1			В	0.0				
	- 1.1	CLAY - Hard, grey clay (possibly extremely low strength, extremely weathered claystone), M <wp< td=""><td></td><td>D</td><td>1.1</td><td></td><td></td><td></td><td></td></wp<>		D	1.1				
	· 1.3				1.25		pp = 550->600		
	-2 -2	grey claystone Pit discontinued at 1.35m, refusal							-2

RIG: Backhoe LOGGED: Fulham SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN SITU TESTING LEGEND
PIL(D) Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
Pp Pocket penetrometer (kPa)
S Standard penetration test
Water seep
Water seep
Water seep
Water seep
V Shear vane (kPa)

CLIENT: Cardno Pty Ltd SURFACE LEVEL: 65.0m* AHD PIT No: TP28

PROJECT: North Shearwater Residential Subdivision-Stage **EASTING**: 420268 PROJECT No: 81259 LOCATION: Off Viney Creek Road, Tea Gardens NORTHING: 6389142 DATE: 6/3/2013

		Description	.je		Sam		& In Situ Testing	_	B B
꿉	Depth (m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
	-	TOPSOIL - Medium dense, brown silty fine grained sandy topsoil, damp		D ,	0.1	Š			5 10 15 20
	0.15	SANDY CLAY - Stiff to very stiff, light brown and orange, fine to medium grained sandy clay with some silt, M>Wp			0.2		pp = 200-250		
	_			U ₅₀	0.4				
	0.55	CLAYSTONE - (Medium to high strength) moderately			0.5		pp = 360		-
	- 0.6	CLAYSTONE - (Medium to high strength) moderately weathered, grey and orange claystone Pit discontinued at 0.6m, refusal							
	_								
	- 1								-1
	-								
	_								
	-								
	_								
	_								
	-2								-2
	_								
	-								
	-								
	-								-

RIG: Backhoe LOGGED: Fulham SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
B Bulk sample
C Core drilling
C Core drilling
D Disturbed sample
E Environmental sample
W Water sample
W Water sample
W Water level

G LEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

□ Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

CLIENT: Cardno Pty Ltd SURFACE LEVEL: 59.0m* AHD PIT No: TP29

PROJECT: North Shearwater Residential Subdivision-Stage **EASTING**: 420290 PROJECT No: 81259 LOCATION: Off Viney Creek Road, Tea Gardens NORTHING: 6389066 DATE: 6/3/2013 SHEET 1 OF 1

	_	Description	.ie		Sam		& In Situ Testing	_	
R	Depth (m)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
Ш		Strata	ŋ	Ţ	De	San	Comments		5 10 15 20
	-	TOPSOIL - Very loose, brown, silty fine grained sandy topsoil with abundant rootlets, moist		D	0.1				_
	- 0.2	SILTY CLAY - Stiff to very stiff, brown silty clay with some fine to medium grained sand, M>Wp	1/1/						
	-				0.4		pp = 250		. [
	- 0.6	CLAY - Very stiff, brown\red clay with some weathered claystone cobbles, M > Wp							
	-				0.9		pp = 200-300		
	-1			D	1.0				-1
	-								-
	- 1.3	CLAY - Hard, grey clay (possibly weathered claystone), M <wp< td=""><td></td><td>В</td><td>1.3</td><td></td><td></td><td></td><td></td></wp<>		В	1.3				
				D	1.5				
	-				4.0		400		-
	-				1.8		pp = 400		
	-2								-2
	-								
	- 2.4	CLAYSTONE - (Medium strength) slightly weathered,							
	- 2.5	grey claystone Pit discontinued at 2.5m, refusal	<u> </u>					T	
	-								
	-								

RIG: Backhoe LOGGED: Fulham SURVEY DATUM: MGA94

WATER OBSERVATIONS: Free groundwater observed at 2.5m

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample G G Gas sample PlD Photo ionisation detector (ppm)

B Bulk sample P Piston sample PL(A) Point load axial test Is(50) (MPa)

C Core drilling W Water sample PL(D) Point load diametral test Is(50) (MPa)

C Core drilling V Water sample PlD PlD Photo ionisation detector (ppm)

PL(A) Point load daxial test Is(50) (MPa)

PL(D) Point load diametral test Is(50) (MPa)

PL(D) Point load diametr

SURFACE LEVEL: 58.5m* AHD PIT No: TP31 **CLIENT:** Cardno Pty Ltd

PROJECT: North Shearwater Residential Subdivision-Stage **EASTING**: 420393 **PROJECT No:** 81259 LOCATION: Off Viney Creek Road, Tea Gardens **NORTHING:** 6389129 **DATE:** 6/3/2013 SHEET 1 OF 1

		Description	ie		Sam		& In Situ Testing	_			 _	
R	Depth (m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Dyna (mic Pene blows per	Test 20	
	- 0.2	TOPSOIL - Loose to medium dense, brown, silty fine grained sandy topsoil with abundant rootlets, moist CLAYSTONE - (Low to medium strength), moderately weathered grange claystone.		D	0.1	0,			- []
	-1	Pit discontinued at 0.3m, refusal							-1			
	-2								-2			

LOGGED: Fulham RIG: Backhoe **SURVEY DATUM: MGA94**

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample G & IN SITU TESTING
Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

GLEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

☐ Sand Penetrometer AS1289.6.3.3

CLIENT: Cardno Pty Ltd SURFACE LEVEL: 64.0m* AHD PIT No: TP32

PROJECT: North Shearwater Residential Subdivision-Stage **EASTING**: 420445 PROJECT No: 81259 LOCATION: Off Viney Creek Road, Tea Gardens NORTHING: 6389166 DATE: 6/3/2013

Г		Description	U		Sam	pling 8	& In Situ Testing		
뭅	Depth (m)	of	Graphic Log	e				Water	Dynamic Penetrometer Test (blows per 150mm)
	(111)	Strata	ō	Туре	Depth	Sample	Results & Comments		5 10 15 20
		TOPSOIL - Medium dense, brown, fine grained silty sandy topsoil with abundant rootlets, damp							
	-	SILTY CLAY - Stiff, brown silty clay, slightly fine grained sandy with some weathered sandstone cobbles, damp		D/ U ₅₀	0.15 0.2 0.3		pp = 150		
	- 0	A SANDY CLAY / CLAYEY SAND - Dense, very stiff,							-
	-	orange and grey, fine to medium grained sandy clay / clayey sand with some weathered sandstone cobbles up to 100mm		D	0.45 0.5		pp = 200		-
	-				0.6		pp = 280		
		SANDSTONE - (Medium to high strength) moderately	<u> </u>						-
	0.8	SANDSTONE - (Medium to high strength) moderately to slightly weathered, grey fine to medium grained sandstone							
	-1	Pit discontinued at 0.85m, refusal							-1
	-								
	_								
	_								
	-								
	-								-
	_								-
	-2								-2
	_								-
	-								-
	-								
	-								
	-								
	-								}

RIG: Backhoe LOGGED: Fulham SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
B Buk Sample
B Buk Sample
C Core drilling
C C Core drilling
D Disturbed sample
E Environmental sample
W Water sample
W Water sample
W Water level

GLEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

□ Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

SURFACE LEVEL: 64.5m* AHD PIT No: TP33 **CLIENT:** Cardno Pty Ltd

PROJECT: North Shearwater Residential Subdivision-Stage **EASTING**: 420498 **PROJECT No:** 81259 LOCATION: Off Viney Creek Road, Tea Gardens **DATE:** 6/3/2013 **NORTHING**: 6389215

		Description	. <u>o</u>		Sam	npling &	& In Situ Testing					1
쮼	Depth (m)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Dynamic P (blows	per 150n	iter Lest nm)	
L		Strata		Ę,	۵	Sal	Comments		5 10	15	20	4
		TOPSOIL - Medium dense, brown, silty fine grained sandy topsoil with abundant rootlets								:	:	
			RX] _								1
	0.2	SANDSTONE - (Medium strength) moderately		D	0.2							>
	0.3	From 0.29m, (high strength) slightly weathered Pit discontinued at 0.3m, refusal										1
	-	Pit discontinued at 0.3m, refusal							-			
	-								- : :	:		
										:		
	-											
	-								- :	:		
	-1								-1			
										:		
	-								-			
	-								-			
	-								. :	:		
	-								-			
	-									:		
	-								-			
											:	
										:		
	-2								-2			
	-								-		:	
	-								- : :	:	:	
										:		
	-								-	:		
	-								- : :		:	
										:		
										:		
	-								-	:		
										:		

RIG: Backhoe LOGGED: Fulham **SURVEY DATUM: MGA94**

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample LING & IN STOTESTING
G Gas sample
P Piston sample (x mm dia.)
U, Tube sample (x mm dia.)
W Water sample
D Water seep
Water level

GLEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

☐ Sand Penetrometer AS1289.6.3.3 ☑ Cone Penetrometer AS1289.6.3.2

SURFACE LEVEL: 62.5m* AHD **PIT No:** TP34 **CLIENT:** Cardno Pty Ltd

PROJECT: North Shearwater Residential Subdivision-Stage **EASTING**: 420514 **PROJECT No: 81259** LOCATION: Off Viney Creek Road, Tea Gardens **NORTHING:** 6389145 **DATE:** 6/3/2013 SHEET 1 OF 1

	Description	_ غز		Sam		& In Situ Testing		Dur:-	Janetii :	notor T
Depth (m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Dynamic I (blow		
	TOPSOIL - Loose, brown, silty fine grained sandy topsoil with abundant rootlets and some weathered claystone cobbles		D	0.1	Š			5	10 15	5 20
0.2	CLAY - Stiff to very stiff, grey and orange clay with some weathered claystone cobbles up to 100mm,			0.2		pp = 150-180		-		
	M>Wp		D	0.3				'		:
				0.4		pp = 250			<u>:</u> :	
			В	0.6		pp = 350		-		
0.7	CLAYSTONE - (Medium strength) slightly weathered, grey claystone							-		
0.8	Pit discontinued at 0.8m, refusal			-0.8						
-1								-1		
								- :		:
								-		
								- : - :		:
								-		
								- : : :		:
								-		
								- :		:
-2								-2		
								- :		:
								-		
								-		:
								- :		:
								-		
					1			F .		

LOGGED: Fulham RIG: Backhoe **SURVEY DATUM: MGA94**

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample EING & IN STOTESTING
G Gas sample
P Piston sample (x mm dia.)
U, Tube sample (x mm dia.)
W Water sample
Vater seep
Water level

GLEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

CLIENT: Cardno Pty Ltd SURFACE LEVEL: 63.0m* AHD PIT No: TP35

PROJECT: North Shearwater Residential Subdivision-Stage **EASTING**: 420590 PROJECT No: 81259 LOCATION: Off Viney Creek Road, Tea Gardens NORTHING: 6389226 DATE: 5/3/2013

П		Description	0		Sam	plina 8	& In Situ Testing	\Box	
R	Depth	Description of	Graphic Log					Water	Dynamic Penetrometer Test (blows per 150mm)
	(m)	Strata	Gra	Type	Depth	Sample	Results & Comments	×	(blows per 150mm) 5 10 15 20
		TOPSOIL - Loose, brown, fine to medium grained silty sandy topsoil with abundant rootlets, moist		D	0.1	0)			
	0.15	SILTY CLAY - Stiff, brown silty clay, M>Wp	1/1/	D U ₅₀	0.15 0.2				1
		From 0.35m, very stiff with some fine to medium		U ₅₀	0.3		pp = 150 pp = 350		
		grained sand		D	0.6		, ,	-	
	. 0.9	SANDSTONE - (Extremely low to very low strength)						-	
	-1	SANDSTONE - (Extremely low to very low strength) highly to moderately weathered, grey with some orange fine to medium grained sandstone						-	-1
	1.25	SANDSTONE - Medium to high strength, slightly weathered, grey, fine to medium grained sandstone	<u> </u>						
		Pit discontinued at 1.3m, refusal						-	
								-	
	-2							-	-2
								-	
	-							-	
	-							-	
	-								
	-							-	
Ιl									

RIG: Backhoe LOGGED: Fulham SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN SITU TESTING LEGEND
PIL(D) Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
Pp Pocket penetrometer (kPa)
S Standard penetration test
Water seep
Water seep
Water seep
Water seep
V Shear vane (kPa)

☐ Sand Penetrometer AS1289.6.3.3 ☐ Cone Penetrometer AS1289.6.3.2

CLIENT: Cardno Pty Ltd SURFACE LEVEL: 58.0m* AHD PIT No: TP36

PROJECT: North Shearwater Residential Subdivision-Stage **EASTING**: 420606 PROJECT No: 81259 LOCATION: Off Viney Creek Road, Tea Gardens NORTHING: 6389165 DATE: 5/3/2013

D- "	Description	Jic -		Sam		& In Situ Testing		Dynamia Paratramatar Tt
Depth (m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20
	TOPSOIL - Soft, brown, fine to medium grained sandy silty topsoil with abundant rootlets, damp to moist		D	0.1				
- 0.2	SANDY SILTY CLAY - Stiff, brown, fine to medium grained sandy silty clay, M>Wp		D	0.3		pp = 200		
- 0.6				0.5		pp = 150		
-	SANDSTONE - (Extremely low to very low strength) highly weathered, orange, fine to medium grained sandstone, medium to high strength in parts		B D-/	-0.7				
0.8	SANDSTONE - (Medium to high strength) slightly weathered, grey, fine to medium grained sandstone		D	0.8 0.85				
- 1	Pit discontinued at 0.9m, refusal							-1
-								
-								
-								
_								
-								
-								
-								
-								-
-								
-2								-2
-								
-								h i i i

RIG: Backhoe LOGGED: Fulham SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
B Buk Sample
B Buk Sample
C Core drilling
C C Core drilling
D Disturbed sample
E Environmental sample
W Water sample
W Water sample
W Water level

GLEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

□ Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

SURFACE LEVEL: 53.0m* AHD PIT No: TP37 **CLIENT:** Cardno Pty Ltd

North Shearwater Residential Subdivision-Stage **EASTING**: 420619 PROJECT: **PROJECT No: 81259** LOCATION: Off Viney Creek Road, Tea Gardens **NORTHING:** 6389067 **DATE:** 5/3/2013 SHEET 1 OF 1

		Description	.je _		Sam		& In Situ Testing		Dynamic Panetre to To
전 Depth (m)	h	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20
		TOPSOIL - Loose, brown, silty sandy topsoil with abundant rootlets, wet				0,			1
0.).1	SILTY SAND / SANDY SILT - Firm to stiff, grey, fine to medium grained silty sand / sandy silt, wet		_D_	0.1				
_				B D	0.3				
0.).4	SANDY CLAY - Stiff to very stiff, orange and grey, fine to medium grained sandy clay, M≯Wp			0.4				
		,]	0.5		pp = 150		
				D	0.6		200		
).8				0.7		pp = 280		
	,.0	CLAYEY SAND - Very dense, orange and grey, fine to medium grained clayey sand (possibly weathered sandstone), humid to damp							-
-1 1.	1.0	SANDSTONE - (Medium to high strength) moderately to slightly weathered, grey with some orange fine to medium grained sandstone	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						-1
1.1	15	Pit discontinued at 1.15m, refusal							
-									
-									
-									
}									-
-									
-									-
-									-
-2									-2
_									-
-									-
-									-
-									-
}									-
-									-
-									-
-									-
-									-

RIG: Backhoe LOGGED: Fulham **SURVEY DATUM: MGA94**

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample LING & IN STOTESTING
G Gas sample
P Piston sample (x mm dia.)
W tuse sample (x mm dia.)
W Water sample
Water seep
Water level

G LEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

☐ Sand Penetrometer AS1289.6.3.3 ☑ Cone Penetrometer AS1289.6.3.2

CLIENT: Cardno Pty Ltd SURFACE LEVEL: 58.0m* AHD PIT No: TP38

PROJECT: North Shearwater Residential Subdivision-Stage **EASTING**: 420547 PROJECT No: 81259 LOCATION: Off Viney Creek Road, Tea Gardens NORTHING: 6389094 DATE: 6/3/2013 SHEET 1 OF 1

D .:	Description	jic _		Sam		& In Situ Testing		Dynamic Pen	otromotor T	
로 Depth (m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	(blows pe	er 150mm)	
	TOPSOIL - Medium dense, brown, silty sandy topsoil with abundant rootlets and weathered sandstone	M			Ŋ			5 10	15 2	20 : : :
0.1	CLAYEY SAND - Loose, brown, fine to medium grained clayey sand		D	0.15			-			
0.4	From 0.35m, some highly weathered sandstone	1//					1			<u>:</u>
-1								-1		
-2							-	-2		
-							-			
-										

RIG: Backhoe LOGGED: Fulham SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
B Bulk sample
C Core drilling
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN SITU TESTING
G Gas sample
P Piston sample (x mm dia.)
W Water sample (x mm dia.)
W Water sample
E Environmental sample
W Water level

GLEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

□ Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

CLIENT: Cardno Pty Ltd SURFACE LEVEL: 57.5m* AHD PIT No: TP39

PROJECT: North Shearwater Residential Subdivision-Stage **EASTING**: 420471 PROJECT No: 81259 LOCATION: Off Viney Creek Road, Tea Gardens NORTHING: 6389072 DATE: 6/3/2013 SHEET 1 OF 1

Donth	Description	hic				& In Situ Testing		Dynamic Penetrometer Test
Depth (m)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	(blows per 150mm)
	Strata		Ę.	ے ا	Sal	Comments	$\perp \perp$	5 10 15 20 1 : : : :
	TOPSOIL - Loose, brown silty fine grained sandy topsoil with abundant rootlets and weathered	W	D	0.1				
0.15	sandstone cobbles	())	D	0.15				L
	SANDY CLAY - Stiff, brown, fine to medium grained sandy clay with trace to some silt, slightly sandy in			0.2		pp = 200		
	parts, M>Wp		U ₅₀					
			050					
				0.4			1 1	
0.5		<u> </u>		0.45				
	SANDSTONE AND SILTSTONE - (Extremely low strength) extremely weathered, orange, fine to medium	::: -						
0.62	strength) extremely weathered, orange, fine to medium grained sandstone and siltstone	::: —	_D_	_0.6_			+	
	From 0.6m, (medium to high strength) slightly weathered						-	
	Pit discontinued at 0.62m, refusal							
1								1
'								
							-	
2								2

RIG: Backhoe LOGGED: Fulham SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

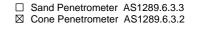
A Auger sample G G Gas sample PlD Photo ionisation detector (ppm)
B Bulk sample P Piston sample PL(A) Point load axial test Is(50) (MPa)
BLK Block sample U Tube sample (K mm dia.)
C Core drilling W Water sample PL(D) Point load diametral test Is(50) (MPa)
D Disturbed sample P Water seep S S Standard peneration test
E Environmental sample Water level V Shear vane (kPa)

□ Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

SURFACE LEVEL: 53.0m* AHD **PIT No:** TP40 **CLIENT:** Cardno Pty Ltd

North Shearwater Residential Subdivision-Stage **EASTING**: 420527 PROJECT: **PROJECT No: 81259** LOCATION: Off Viney Creek Road, Tea Gardens **NORTHING:** 6389022 **DATE:** 6/3/2013 SHEET 1 OF 1

П		Description	- C		Sam	npling &	& In Situ Testing		
R	Depth (m)	of	Graphic Log	e e				Water	Dynamic Penetrometer Test (blows per 150mm)
	(111)	Strata	يق	Type	Depth	Sample	Results & Comments	<	5 10 15 20
П		TOPSOIL - Soft, brown, fine grained sandy silty topsoil with abundant rootlets	M						
	-	with abundant rootlets		D	0.1				 L
	0.2	SILTY CLAY - Stiff to very stiff, brown silty clay, M>Wp	XX		0.2		pp = 150-300		
		SIETT SEAT - Sun to very sun, blown sing day, w/wp							
									[L]
	-			_D_/	0.5				
	-			В					- <u>-</u>
	0.7		<u> </u>		0.7				
		CLAYSTONE - (Extremely low strength) extremely weathered, grey and orange weathered claystone							
	-								
	-1			_D_/	1.0				-1
	-								
	_			В					
	1.3½ 1.32′	CLAYSTONE - (High strength) slightly weathered, light grey/white claystone			_1.3_				
	=	Pit discontinued at 1.32m, refusal							
	-								
	-								
	-								
	-								-
	-2								-2
	-								
	-								-
	-								
	.								
	•								
	-								-
	.								


RIG: Backhoe LOGGED: Fulham **SURVEY DATUM: MGA94**

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample G Gas sample
P Piston sample (V. Tube sample (x mm dia.)
W Water sample
Water seep
Water level GLEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

CLIENT: Cardno Pty Ltd SURFACE LEVEL: 47.5m* AHD PIT No: TP41

PROJECT: North Shearwater Residential Subdivision-Stage **EASTING**: 420524 PROJECT No: 81259 LOCATION: Off Viney Creek Road, Tea Gardens NORTHING: 6388967 DATE: 6/3/2013 SHEET 1 OF 1

П		Description	U		Sam	pling 8	& In Situ Testing		
R	Depth (m)	of	Graphic Log	Φ				Water	Dynamic Penetrometer Test (blows per 150mm)
	(m)	Strata	Gra	Type	Depth	Sample	Results & Comments	>	5 10 15 20
		TOPSOIL - Loose, brown silty fine grained sandy topsoil, saturated		D	0.1				
-	0.2-	SILTY CLAY - Stiff, brown silty clay with some fine to medium grained sand, M>Wp		D	0.3		pp = 150-200		
-	0.45	CLAY - Very stiff, grey clay with some silt, M>Wp		D/ B	0.5		pp = 200-250		
-	0.6- 0.65-	CLAYSTONE - (Medium strength) moderately to slightly weathered, orange and grey claystone			0.6				-
-		Pit discontinued at 0.65m, refusal							
	·1								-1
-									
-									
-									
	2								-2

RIG: Backhoe LOGGED: Fulham SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
B Buk Sample
B Buk Sample
C Core drilling
C C Core drilling
D Disturbed sample
E Environmental sample
W Water sample
W Water sample
W Water level

GLEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

□ Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

CLIENT: Cardno Pty Ltd SURFACE LEVEL: 58.5m* AHD PIT No: TP42

PROJECT: North Shearwater Residential Subdivision-Stage **EASTING**: 420655

LOCATION: Off Viney Creek Road, Tea Gardens

NORTHING: 6389137

PROJECT No: 81259

DATE: 5/3/2013

SHEET 1 OF 1

	Depth	Description	hic L		Sam		& In Situ Testing		Dynamic Panetrometer Tee	,
ā	(m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Tes (blows per 150mm) 5 10 15 20	
	-	TOPSOIL - Firm, brown silty topsoil with abundant rootlets and some fine to medium grained sand, moist		D	0.1			-		
	- 0.2	SILTY CLAY - Stiff to very stiff, brown silty clay with some to slightly fine to medium grained sandy clay, M>Wp	1/1/	D U ₅₀	0.2		pp = 200	-		
	- 0.4	SANDSTONE - (Very low strength) highly to moderately weathered, orange and grey fine to medium grained sandstone			0.5			-		
	0.65	From 0.6m, (medium to high strength) slightly _weathered /	<u> :::::::</u>							
	-	Pit discontinued at 0.65m, refusal								
	- 1								-1	
	-									
	-									
	-									
	-									
	-									
	-									
	-									
	-									
	-									
	-2								-2	
	-									
	-									
	-									
	-									
	-									
	_									
	-									
	-									
	-									

RIG: Backhoe LOGGED: Fulham SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

SAMPLING & IN SITU TESTING LEGEND

Be G Gas sample PID Photo

A Auger sample
B Bulk sample
B Buk Sample
B Buk Sample
C Core drilling
C C Core drilling
D Disturbed sample
E Environmental sample
W Water sample
W Water sample
W Water level

G LEGEND
PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

□ Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

CLIENT: Cardno Pty Ltd SURFACE LEVEL: 63.0m* AHD PIT No: TP43

PROJECT: North Shearwater Residential Subdivision-Stage **EASTING**: 420710 PROJECT No: 81259 LOCATION: Off Viney Creek Road, Tea Gardens NORTHING: 6389030 DATE: 5/3/2013

.	Description	_ <u>ان</u>		Sam		In Situ Testing		D	nia D	.tror'	T
Depth (m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Dynar (b	nic Pene lows pei	trometo 150mi	eries m) ²⁰
	TOPSOIL - Medium dense, brown, silty fine grained sandy topsoil with abundant rootlets, damp to moist		D	0.1 0.15	0.7		-		1		
0.2	SILTY CLAYEY SAND / SILTY SANDY CLAY - Stiff, medium dense, light brown, fine to medium grained silty clayey sand / silty sandy clay with higher clay content in parts		U ₅₀	0.35			-				
0.4	SANDSTONE - (Medium to high strength) moderately to slightly weathered, orange and grey, fine grained sandstone	1					-				
	Pit discontinued at 0.4m, refusal							:			
							_				
1								1			
							-				
							-	:			
							-				
							-	:			
							-				
							_				
2								2			
							_				
							-			:	:

RIG: Backhoe LOGGED: Fulham SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * RLs interpolated from the site survey plan

A Auger sample
B Bulk sample
C C Core drilling
D Disturbed sample
D Disturbed sample
E E Environmental sample

SAMPLING & IN SITU TESTING LEGEND
PID Photo ionisation detector (ppm)
PID STANDARD (ppm)
PID Photo ionisation detector (ppm)
PID STANDARD (ppm)
PID Photo ionisation detector (ppm)
PID STANDARD (ppm)
PID S

□ Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

SHEET 1 OF 1

CLIENT: Wolin Investments Pty Ltd

PROJECT: North Shearwater Residential Subdivision

LOCATION: Viney Creek Road, Tea Gardens

SURFACE LEVEL: 64.0 m **EASTING:** 420366

NORTHING: 6389078 DIP/AZIMUTH: 90°/--

PIT No: 101

PROJECT NO: 81259.01

DATE: 7/3/2018 SHEET: 1 of 1

		DF	RILL	NG		Γ-			IWUTH: 90				HEET: 1 of 1
BOG	RESS	_		PLING		_	MATERIAL		Book I		ROCK	MAS	\$
BRILLING & CASING		GEO		IDs and REMARKS	RL DEPTH (m)	GRAPHIC	DESCRIPTION OF STRATA	Weathering	Very Low Low Low Medium ang 33 Medium ilip xy High Very High Ex High	Fracture Spacing (m)	Core Rec %	% 0	TEST RESULTS DISCONTINUITIES & COMMENTS
2 %	*	Ö	້ພ	HEMAHKS	20.0			3	Very Low Low Medium High Very High Ex High	85 85 88 8	Š	Rab	& COMMILTERS
		D	E		-		FILL/SILT: brown; moist; stiff; o.10m abundant rootlets FILL/SILT: grey brown; trace fine to medium grained sand; moist;						
					-		stiff				7*************************************		
		D	E		0.5-	:				Land Land Land Land Land Land Land Land			
					-					TOTAL CAME CAME CAME CAME CAME CAME CAME CAME			
					-81.0-		1.00m						
		D	Е		+	7	SILTY CLAY: red brown and grey; with silt; M>Wp; very stiff						
					-	1							
			Article Andreas - Andreas		1.5-								pp: 150 - 200 kPa
									THE STATE ST				pp. 100 · 200 nr a
					-	1			And the terms of t				
					- 82.0-				- Bank was seen and s		And and a second		
					-		2.10m SANDY CLAY: grey; sand is fine 2.20m to medium grained; M>Wp; hard						
							Pit discontinued at 2.20m depth refusal on bedrock						
					2.5								
										ALAN LAND LAND LAND LAND LAND LAND LAND			
					-								
ic.	Kon	net	211 1	VB97R	' 23.0-		REFER TO EXPLANATORY NOTES FOR DESCRIP DRILLER: Lantry LOGO	TION		D ABBREVIATIO	I INS IECK		

SAMPLING & IN SITU TESTING LEGEND

Piston sample
Tube sample (x mm dia)
Water seep
Water level
Photo ionisation detector (ppm) Auger sample Bulk sample Core drilling Disturbed sample Envirnmental Sample

PL(A) Point load axial test is(50) (MPa)
PL(D) Point load diametrat test is(50) (MPa)
pp Pocket penetrometer (kPa)
SPT Standard penetration test
V Shear vane (kPa)

CLIENT: Wolin Investments Pty Ltd

PROJECT: North Shearwater Residential Subdivision

LOCATION: Viney Creek Road, Tea Gardens

SURFACE LEVEL: 61.0 m **EASTING: 420695**

NORTHING: 6388966 DIP/AZIMUTH: 90°/--

PIT No: 102

PROJECT NO: 81259.01

DATE: 7/3/2018 SHEET: 1 of 1

	DF	RILL	ING		1	MATERIAL	- A.C.	IMUTH: 90°/		2001		HEET: 1 of 1
ROGRESS			IPLING	Ê	U		En.		Fracture	ROCK	MAS	58
& CASING WATER	GEO	ENA	IDs and REMARKS	B RL O DEPTH (r	GRAPHIC		Weathering	Strength :	Spacing (m)	Core Rec %	RQD%	TEST RESULTS DISCONTINUITIES & COMMENTS
				-\$1.0-		FILL/SANDY CLAY: grey brown; sand is fine to medium grained; trace fine to medium sized gravel; M <wp< td=""><td></td><td></td><td></td><td></td><td></td><td></td></wp<>						
	D	Th		-:2.0-			MW to SW					pp: 230 - 250 kPa
G: Kom				2.5 -		Pit discontinued at 2.40m depth refusal REFER TO EXPLANATORY NOTES FOR DESCRIPT RILLER: Lantry LOGG	200 S				en promotion de la company	

SAMPLING & IN SITU TESTING LEGEND

Piston sample
Tube sample (x mm dia)
Water seep
Water level
Photo ionisation detector (ppm)

PL(A) Point load axial test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
pp Pocket penetrometer (KPa)
PT Standard penetration test
V Shear vane (KPa)

CLIENT: Wolin Investments Pty Ltd

PROJECT: North Shearwater Residential Subdivision

LOCATION: Viney Creek Road, Tea Gardens

SURFACE LEVEL: 65.0 m

EASTING: 420751 **NORTHING:** 6389062 DIP/AZIMUTH: 90°/-

PIT No: 103

PROJECT NO: 81259.01

DATE: 7/3/2018

		P						/AZ	JIN	MUTH: 90)°/		S	HEET : 1 of 1
0000				ING	<u> </u>		MATERIAL					ROCK	MAS	SS .
BRILLING 3	WATER	GEO	SAN EN	IPLING IDs and REMARKS		GRAPHIC LOG	DESCRIPTION OF STRATA	Weathering		Very Low Low Medium usang High Very High Ex High	Fracture Spacing (m)	Core Rec %	Rab %	TEST RESULTS DISCONTINUITIES & COMMENTS
Anna tana		March 2017			190.0		TOPSOIL/SANDY SILT: dark 0.10m brown; sand is fine grained; moist; abundant rootlets SILT: grey brown; moist 0.25m				00 68 0)	Δ.	
		**************************************			0.5-		SANDSTONE: fine to medium grey and yellow brown; higly fractured	MW to	ľ				ANALYSIS ANA	- -
_							Pit discontinued at 0.70m depth					14.001		-
11 11 11 11 11 11 11 11 11 11 11 11 11					-31.0-		refusal		, seems show seems made made made the day of					- - -
					1.5-			Andready designation of the second se				A CONTRACTOR OF THE CONTRACTOR	The state of the s	- -
		marks the greatest of the constitution of the			-22.0-			All all and a second a second and a second and a second and a second and a second a				A Visit of the Control of the Contro	and the state of t	- - -
					2.5-				-				a a a a a a a a a a a a a a a a a a a	- - - -
	Kon	nate	31 V	VB97R	<u>89.0</u>		REFER TO EXPLANATORY NOTES FOR DESCRIP RILLER: Lantry LOGG	TION	OF	SYMBOLS AN		VS ECKI		-

REMARKS: Location co-ordinates obtained using hand held GPS, surface levels interpolated from supplied survey plan. Location and surface levels should be considered approximate only.

GRID DATUM: MGA94 Zone 56

SAMPLING & IN SITU TESTING LEGEND

P Picton sample
U, Tube sample (x mm dia.)
Water seep
Water level
PID Photo fonisation detector (ppm)

PL(A) Point load axial test la(50) (MPa)
PL(D) Point load diametral test la(50) (MPa)
pp Pocket penetrometer (kPa)
PS Standard ponetration test
V Shear vane (kPa)

CLIENT: Wolin Investments Pty Ltd

PROJECT: North Shearwater Residential Subdivision

LOCATION: Viney Creek Road, Tea Gardens

SURFACE LEVEL: 66.0 m EASTING: 420310

NORTHING: 6389198 DIP/AZIMUTH: 90°/-- **PIT No:** 104

PROJECT NO: 81259.01

DATE: 7/3/2018 SHEET: 1 of 1

ŀ		DR	ILL	ING		Ĭ	MATERIAL	T		 30	·	000		neel: [OT]
PROG	RESS		SAM	PLING	-				Т	Rock	Fracture	ROCK	IVIAS	08
DRILLING & CASING	WATER	GEO	ENV	IDs and REMARKS	I	GRAPHIC LOG	DESCRIPTION OF STRATA	Weathering		Very Low Low Medium High Very High Ex High	Spacing (m)	Core Rec %	ROD %	TEST RESULTS DISCONTINUITIES & COMMENTS
		The state of the s			0.5 -		TOPSOIL/SANDY SILT: brown; sand is fine grained; dry; trace boulders up to 0.5m in diameter; abundant rootlets 0.55m SANDY CLAY: orange brown and grey; sand is fine to medium grained; M>Wp; stiff; residual			94	86 82 88 8	8	R	
			menter pi propriem den de de construente de la construente del la construente del la construente de la		1.5 -		Pit discontinued at 1.30m depth refusal	MW						
			nym ny y mananananananananananananananananananan		2.5 -		REFER TO EXPLANATORY NOTES FOR DESCRIP	100					and population in the second s	

RIG: Komatsu WB97R

CHECKED:

REMARKS: Location co-ordinates obtained using hand held GPS, surface levels interpolated from supplied survey plan. Location and surface levels should be considered approximate only.

GRID DATUM: MGA94 Zone 56

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
C Core drilling
D Disturbed sample

P Piston sample
U, Tube sample (x mm dia.)
Water seep
Water level
Photo ionisation detector (ppm)

PL(A) Point load axial test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
pp
Pocket penetrometer (kPa)
SPT Standard penetration test
V Shear vane (kPa)

CLIENT: Wolin Investments Pty Ltd

PROJECT: North Shearwater Residential Subdivision

LOCATION: Viney Creek Road, Tea Gardens

SURFACE LEVEL: 70.0 m EASTING: 420445

NORTHING: 6389278 DIP/AZIMUTH: 90°/-- **PIT No:** 105

PROJECT NO: 81259.01

DATE: 7/3/2018 **SHEET**: 1 of 1

ROGRESS SAMPLING E Q ROCK Fracture	DRILLING		_		AL	IMUTH: 90				HEET: 1 of 1
DESCRIPTION OF STRATA STATE ST		T _	 	MATERIAL	-	Dook		ROCH	(MAS	SS
Discontinued at 0.55m depth refusal on bedrock 1.5 1.5 1.5 1.7 2.5 1.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	5		GRAPHIC		Weathering	Very Low Low Medium High Very High Sx High	Spacing (m)	Core Rec %	Rab %	DISCONTINUITIES
-\$1.0\$1.0\$1.5\$2.0\$2.0-		0.5	· [· [o.10m brown; sand is fine grained; moist SILTY SAND: fine to medium; brown; with medium to high plasticity clay; trace fine sized gravel; dry; dense	AMP (amazon)			Total Annual Control		
		-81.0~		Pit discontinued at 0.55m depth refusal on bedrock						
-22.0- -22.0- -22.0- -22.0- -23.0- -25		1.5-				1				
		- \$2.0-						West in the Control		
		2.5						· VPV AMBRITY		

REMARKS: Location co-ordinates obtained using hand held GPS, surface levels interpolated from supplied survey plan. Location and surface levels should be considered approximate only.

SAMPLING & IN SITU TESTING LEGEND

Auger sample P Piston sample PL Bulk sample U, Tube sample (x mm dia) PL Core drilling P Water scop Disturbed sample Water level PE Envirnmental Sample PID Photo ionisation detector (ppm) V

PL(A) Point load axial test Is(S0) (MPa)
PL(D) Point load diametral test Is(S0) (MPa)
pp Pocket panetrometer (kPa)
SPT Standard penetration test
V Shear vane (kPa)

GRID DATUM: MGA94 Zone 56

CLIENT: Wolin Investments Pty Ltd

PROJECT: North Shearwater Residential Subdivision

LOCATION: Viney Creek Road, Tea Gardens

SURFACE LEVEL: 69.0 m EASTING: 420683

NORTHING: 6389327 DIP/AZIMUTH: 90°/-- **PIT No:** 106

PROJECT NO: 81259.01

DATE: 7/3/2018 **SHEET:** 1 of 1

		DB	} I	ING		T		/AZ	.11.	MUTH: 9	0"/			HEET: 1 of 1
ROGRI				PLING	T _	 	MATERIAL	_	Т	D2		ROC	K MAS	SS
0	œ.		ENV	IDs and REMARKS	B DEPTH (m)	GRAPHIC LOG	DESCRIPTION OF STRATA	Weathering		Very Low Low Medium High Very High	Fracture Spacing (m)	Core Rec %	Rab %	TEST RESULTS DISCONTINUITIES & COMMENTS
Address of the second of the s	ight, the same of	and the second s			0.5		TOPSOIL/SANDY SILT: dark brown; sand is fine grained; moist; abundant rootlets GRAVELLY CLAY: pale grey brown; gravel is fine sized, subangular to angular; with fine grained sand; M <wp; stiff<="" td=""><td>The second secon</td><td></td><td></td><td></td><td>S</td><td>it.</td><td></td></wp;>	The second secon				S	it.	
					-		SANDSTONE: grey o.70m Pit discontinued at 0.70m depth	MW						
The state of the s					-		refusal		1		A CONTROL OF THE CONT			
					-81.0-								***************************************	
			- Contraction (1)		_				1					
				i	1.5-							7720000		
		Consession			-				1					
					-:2:.0-						THE STATE OF THE S			
			The state of the s		œ.,U**				1			***************************************		
			The state of the s		2.5	man appropriate to the second		- And Andrews			And the state of t	- Administrative		
											Arts com man has the			
						i,					The same than th		and the second s	
<u></u>	oma	1 600	, (A)	 'B97R	10.0 	F. P	REFER TO EXPLANATORY NOTES FOR DESCRIPT RILLER: Lantry LOGGE	ION ()F	SYMBOLS AL	ID ABBREVIATION	NS		

ON ILONED.

REMARKS: Location co-ordinates obtained using hand held GPS, surface levels interpolated from supplied survey plan. Location and surface levels should be considered approximate only.

GRID DATUM: MGA94 Zone 56

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
C Core drilling
D Disturbed sample

P Piston sample
U, Tube sample (x mm dia)
Water seep
Water level
PlD Photo ionisation detector (ppm)

PL(A) Point load axial test is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
pp Pockot penetrometer (kPa)
PC Standard penetration test
V Shoar vane (kPa)

CLIENT: Wolin Investments Pty Ltd

PROJECT: North Shearwater Residential Subdivision

LOCATION: Viney Creek Road, Tea Gardens

SURFACE LEVEL: 57.0 m

EASTING: 420809 **NORTHING:** 6389343 DIP/AZIMUTH: 90°/--

PIT No: 107

PROJECT NO: 81259.01

DATE: 7/3/2018 SHEET: 1 of 1

				ING	-			MATERIAL		_			ROCK		HEET: 1 of 1
& CASING O	RESS 5	H		IPLING IDs	긆	DEPTH (m)	GRAPHIC	DESCRIPTION OF	Weathering		Rock Strength	Fracture Spacing			TEST RESULTS DISCONTINUITIES
8 Q. A.	WATER	GEO	ENS	and REMARKS		О.С.	5		Wea	نيــــا	Very Low Low Medium High Very High Ex High	00000 0000 0000 0000 0000 0000 0000 0000	Core Rec %	ROD %	& COMMENTS
					A	-	The state of the s	TOPSOIL/SANDY SILT: brown; sand is fine grained; dry; abundant rootlets							
		D			- (- 0.5~	1.1	SILTY SAND: grey brown; trace clay; dry; medium dense; abundant rootlets				**************************************			
_						-		SANDSTONE: grey and yellow brown	HW						
- Vyy					95	-0.		Pit discontinued at 0.70m depth refusal					A THE STATE OF THE		
,						-							And desired the second	and a signal debetors	
to Printer					1	.5					The state of the s				
					-52	-0.			44.4	1	The state of the s	The party and th	Villand Brown	The first of the f	
		and the state of t	1000									The state of the s	144	and the state of t	
The state of the s					2	.5-								- A April - Ap	
					12	- - - -		DE ED TO EUR		1					
G:	Kom	ats	υV	/B97R			n	REFER TO EXPLANATORY NOTES FOR DESCRIPT RILLER: Lantry LOGGE	ION (OF S	SYMBOLS AN	D ABBREVIATION	vs		

REMARKS: Location co-ordinates obtained using hand held GPS, surface levels interpolated from supplied survey plan. Location and surface levels should be considered approximate only.

SAMPLING & IN SITU TESTING LEGEND

Piston sample
Tube sample (x mm dia)
Water soop
Water level
Photo ionisation detector (ppm)

PL(A) Point load axial test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
pp Pocket ponetromoter (RPa)
SPT Standard penetration test
V Sheur vane (RPa)

Results of Dynamic Penetrometer Tests

ClientCardno Pty LtdProject No.81259ProjectNorth Shearwater Residential Subdivision – Stage 2Date6/3/2013LocationOff Viney Creek Road, Tea GardensPage No.1 of 4

Test Locations	TP01	TP02	TP03	TP04	TP06	TP07	TP08	TP09	TP10	TP12
RL of Test (AHD)										
Depth (m)				Pe	netration Blows/1	Resistar 150 mm	псе			
0.00 – 0.15	2	3	2	2	1	0	1	1	2	1
0.15 – 0.30	2	3	2	2	3	2	2	2	1	5
0.30 - 0.45	10/80	3	3	4	bouncing	3	3	3	3	5
0.45 - 0.60	bouncing	15/120	6	5		32	5	2	5	11
0.60 - 0.75		bouncing	25/60	5			8/50	bouncing	11	20/80
0.75 – 0.90				5			bouncing		21	bouncing
0.90 – 1.05				12/90					25/70	
1.05 – 1.20				bouncing						
1.20 – 1.35										
1.35 – 1.50										
1.50 – 1.65										
1.65 – 1.80										
1.80 – 1.95										
1.95 – 2.10										
2.10 – 2.25										
2.25 – 2.40										
2.40 – 2.55										
2.55 – 2.70										
2.70 – 2.85										
2.85 – 3.00										
3.00 – 3.15										

Test Method	AS 1289.6.3.2, Cone Penetrometer	\square	Tested By	KMF
	AS 1289.6.3.3, Sand Penetrometer		Checked By	JRC

Results of Dynamic Penetrometer Tests

ClientCardno Pty LtdProject No.81259ProjectNorth Shearwater Residential Subdivision – Stage 2Date6/3/2013LocationOff Viney Creek Road, Tea GardensPage No.2 of 4

Test Locations	TP13	TP14	TP15	TP16	TP17	TP18	TP19	TP20	TP21	TP22
RL of Test (AHD)										
Depth (m)				Pe	netration Blows/	Resistar 150 mm	псе			
0.00 - 0.15	3	3	4	1	4	3	2	5	4	2
0.15 - 0.30	4	7	25/10	1	5	25/50	6	6	2	4
0.30 - 0.45	7	4		3	14		35/70	5	11	9
0.45 - 0.60	4/20	7		25/80	25/80			28/110	28/100	25/40
0.60 - 0.75	bouncing	bouncing								
0.75 – 0.90										
0.90 – 1.05										
1.05 – 1.20										
1.20 – 1.35										
1.35 – 1.50										
1.50 – 1.65										
1.65 – 1.80										
1.80 – 1.95										
1.95 – 2.10										
2.10 – 2.25										
2.25 – 2.40										
2.40 – 2.55										
2.55 – 2.70										
2.70 – 2.85										
2.85 – 3.00										
3.00 – 3.15										

Test Method	AS 1289.6.3.2, Cone Penetrometer	\square	Tested By	KMF
	AS 1289.6.3.3, Sand Penetrometer		Checked By	JRC

Results of Dynamic Penetrometer Tests

ClientCardno Pty LtdProject No.81259ProjectNorth Shearwater Residential Subdivision – Stage 2Date6/3/2013LocationOff Viney Creek Road, Tea GardensPage No.3 of 4

		TD 6 : :	TD		TD				TD	TD
Test Locations	TP23	TP24A	TP25	TP26	TP27	TP28	TP29	TP31	TP32	TP33
RL of Test (AHD)										
Depth (m)				Pe		Resistar	nce			
0.00 – 0.15	2	3	5	4	2	4	0	3	6	4
0.15 – 0.30	2	3	4	4	2	4	3	8/50	3	6/100
0.30 - 0.45	4	3	5	3	4	5	4	bouncing	3	bouncing
0.45 - 0.60	4	5	4	4	6	25/50	6		10	
0.60 - 0.75	7	7	6	5	11		14		8	
0.75 – 0.90	25/70	14	7	5	13		17		7	
0.90 – 1.05		25/50	9	6	14		24		9/40	
1.05 – 1.20			9/100	9	18		27		bouncing	
1.20 – 1.35			bouncing							
1.35 – 1.50										
1.50 – 1.65										
1.65 – 1.80										
1.80 – 1.95										
1.95 – 2.10										
2.10 – 2.25										
2.25 – 2.40										
2.40 – 2.55										
2.55 – 2.70										
2.70 – 2.85										
2.85 – 3.00										
3.00 – 3.15										

Test MethodAS 1289.6.3.2, Cone Penetrometer✓Tested ByKMFAS 1289.6.3.3, Sand Penetrometer✓Checked ByJRC

Results of Dynamic Penetrometer Tests

ClientCardno Pty LtdProject No.81259ProjectNorth Shearwater Residential Subdivision – Stage 2Date6/3/2013LocationOff Viney Creek Road, Tea GardensPage No.4 of 4

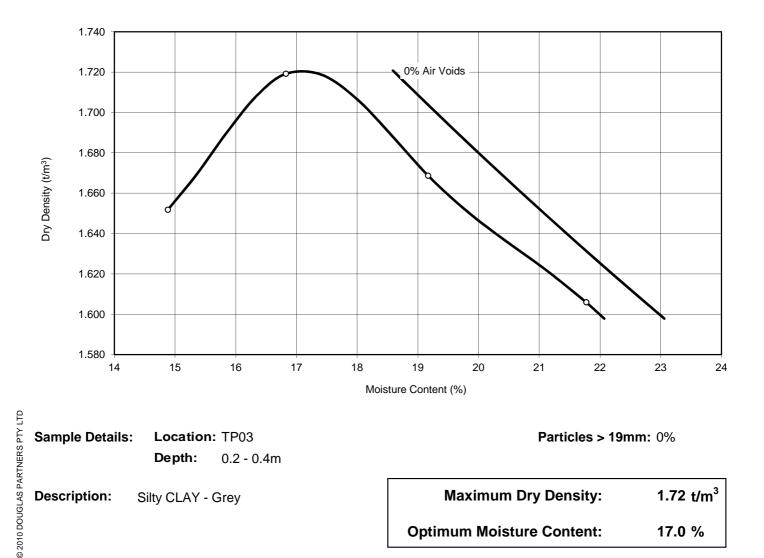
Test Locations	TP34	TP35	TP36	TP37	TP38	TP39	TP40	TP41	TP42	TP43
RL of Test (AHD)										
Depth (m)				Pe	netration Blows/	Resistar	nce			
0.00 - 0.15	2	2	1	2	3	1	1	1	2	4
0.15 – 0.30	2	3	4	2	2	2	2	2	6	7
0.30 - 0.45	4	3	4	3	7	8	3	2	25/50	25/67
0.45 - 0.60	12/50	5	17	5	bouncing	10/100	5	3		bouncing
0.60 - 0.75		5	25/40	7		bouncing	10	12/50		
0.75 – 0.90		5		29			16	bouncing		
0.90 – 1.05		9					25/80			
1.05 – 1.20		10								
1.20 – 1.35										
1.35 – 1.50										
1.50 – 1.65										
1.65 – 1.80										
1.80 – 1.95										
1.95 – 2.10										
2.10 – 2.25										
2.25 – 2.40										
2.40 – 2.55										
2.55 – 2.70										
2.70 – 2.85										
2.85 – 3.00										
3.00 – 3.15										

Test Method	AS 1289.6.3.2, Cone Penetrometer	$\overline{\mathbf{Z}}$	Tested By	KMF
	AS 1289.6.3.3, Sand Penetrometer		Checked By	JRC

Appendix C

Laboratory Test Results

Results of Compaction Test


Client: Cardno Pty Ltd Project No.: 81259

> Report No.: N13-102 1

Project: North Shearwater Residential Subdivision - Stage 1 Report Date: 3.4.2013

Location: Tea Gardens Date of Test: 22.3.2013

> Page: 1 of 1

Sample Details: Location: TP03 Particles > 19mm: 0%

Depth: 0.2 - 0.4m

Description: Silty CLAY - Grey **Maximum Dry Density:** 1.72 t/m³

Optimum Moisture Content: 17.0 %

Remarks:

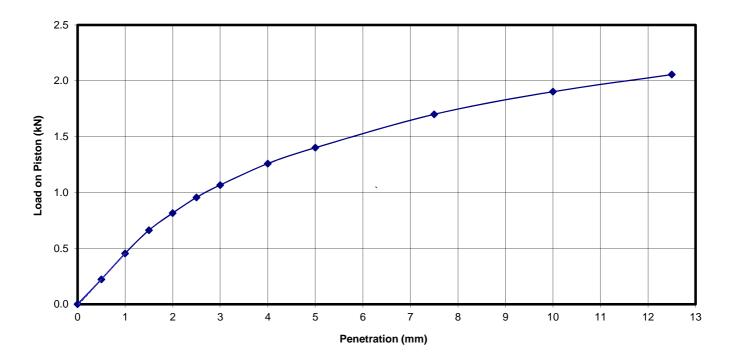
Test Methods: AS 1289.2.1.1, AS 1289. 5.1.1

Sampling Methods: Sampled by DP Engineering Department

Result of California Bearing Ratio Test

Client: Cardno Pty Ltd Project No.: 81259

Project: North Shearwater Residential Subdivision - Stage 1 Report Date: 3.04.2013


Date Sampled: 5-6.03.2013

Date of Test: 1.04.2013

Location: Tea Gardens

Test Location: TP03

Depth / Layer: 0.2 - 0.4m **Page**: 1 of 1

Description: Silty CLAY - Grey

Test Method(s): AS 1289.6.1.1, AS 1289.2.1.1

Sampling Method(s): Sampled by DP Engineering Department Percentage > 19mm: 0.0%

LEVEL OF COMPACTION: 99% of STD MDD **SURCHARGE:** 4.5 kg **SWELL:** 0.4%

MOISTURE RATIO: 98% of STD OMC SOAKING PERIOD: 4 days

(CONDITION	MOISTURE CONTENT %	DRY DENSITY t/m ³
At compaction		16.7	1.70
After soaking		19.9	1.69
After test	Top 30mm of sample	19.2	-
	Remainder of sample	19.1	-
Field values		14.9	-
Standard Comp	action	17.0	1.72

	RESULTS	
TYPE	PENETRATION	CBR (%)
TOP	2.5 mm	7
ТОР	5.0 mm	7

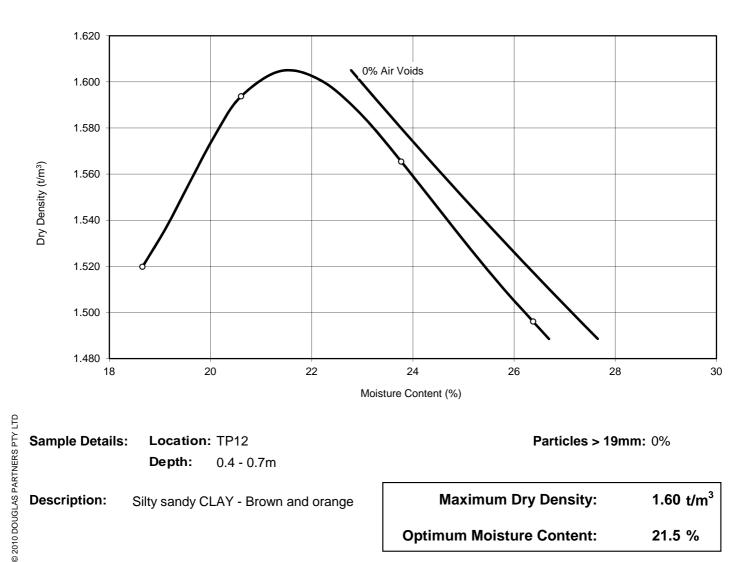
© 2010 DOUGLAS PARTNERS PTY LTD

Accredited for compliance with ISO/IEC 17025

Results of Compaction Test

Tea Gardens

Location:


Client: Cardno Pty Ltd Project No.: 81259

> Report No.: N13-102 3

Project: North Shearwater Residential Subdivision - Stage 1 Report Date: 3.4.2013

> Date of Test: 22.3.2013

> > Page: 1 of 1

Sample Details: Location: TP12 Particles > 19mm: 0%

Dave Millard

Laboratory Manager

Depth: 0.4 - 0.7m

Description: Silty sandy CLAY - Brown and orange **Maximum Dry Density:** 1.60 t/m³

Optimum Moisture Content: 21.5 %

Remarks:

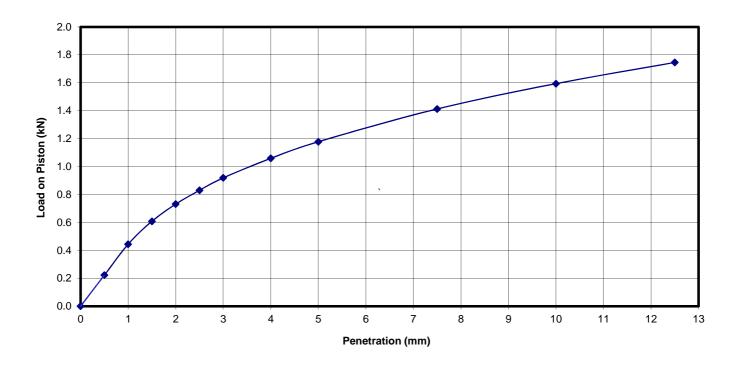
Test Methods: AS 1289.2.1.1, AS 1289. 5.1.1

Sampling Methods: Sampled by DP Engineering Department

Result of California Bearing Ratio Test

Client: Cardno Pty Ltd Project No.: 81259

> Report No.: N13-102_4


Project: North Shearwater Residential Subdivision - Stage 1 **Report Date:** 3.04.2013

> Date Sampled : 5-6.03.2013

Date of Test: 1.04.2013

Location: Tea Gardens TP12 **Test Location:**

Depth / Layer: 0.4 - 0.7m Page: 1 of 1

Description: Silty sandy CLAY - Brown and orange

Test Method(s): AS 1289.6.1.1, AS 1289.2.1.1

Sampling Method(s): Sampled by DP Engineering Department Percentage > 19mm: 0.0%

> LEVEL OF COMPACTION: 99% of STD MDD SURCHARGE: 4.5 kg **SWELL:** 0.8%

MOISTURE RATIO: 98% of STD OMC **SOAKING PERIOD**: 4 days

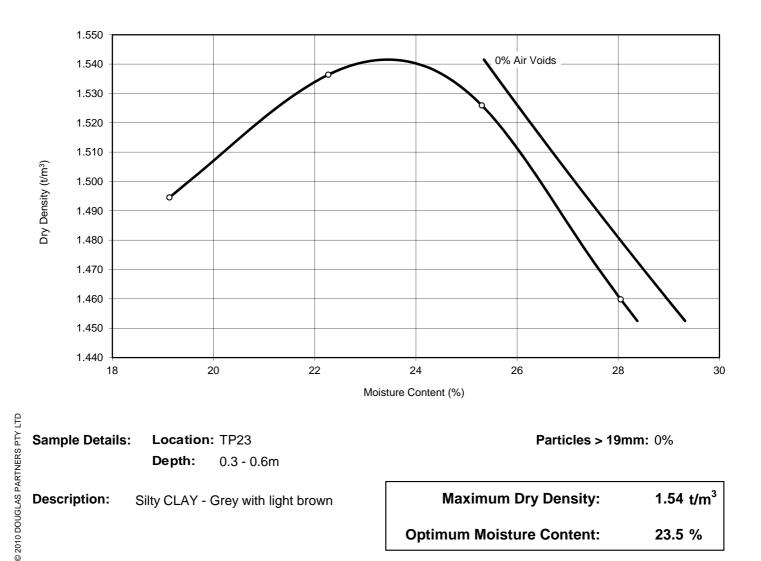
	CONDITION	MOISTURE CONTENT %	DRY DENSITY t/m³
At compaction		21.2	1.58
After soaking		24.4	1.57
After test	Top 30mm of sample	24.1	-
	Remainder of sample	22.8	-
Field values		23.8	-
Standard Comp	paction	21.5	1.60

RESULTS		
TYPE	PENETRATION	CBR (%)
TOR	2.5 mm	6
ТОР	5.0 mm	6

Results of Compaction Test

Tea Gardens

Location:


Client: Cardno Pty Ltd Project No.: 81259

> Report No.: N13-102 5

Project: North Shearwater Residential Subdivision - Stage 1 Report Date: 3.4.2013

> Date of Test: 18.3.2013

> > Page: 1 of 1

Sample Details: Location: TP23 Particles > 19mm: 0%

Depth: 0.3 - 0.6m

Description: Silty CLAY - Grey with light brown **Maximum Dry Density:** 1.54 t/m³

Optimum Moisture Content: 23.5 %

Remarks:

Test Methods: AS 1289.2.1.1, AS 1289. 5.1.1

Sampling Methods: Sampled by DP Engineering Department

Result of California Bearing Ratio Test

Client: Cardno Pty Ltd Project No.: 81259

Project: North Shearwater Residential Subdivision - Stage 1 **Report Date:** 3.04.2013

Date Sampled: 5-6.03.2013

1 of 1

Date of Test: 1.04.2013

Page:

10

Location: Tea Gardens

Test Location: TP23

Depth / Layer: 0.3 - 0.6m

1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4

Penetration (mm)

5

Description: Silty CLAY - Grey with light brown

Test Method(s): AS 1289.6.1.1, AS 1289.2.1.1

Sampling Method(s): Sampled by DP Engineering Department Percentage > 19mm: 0.0%

LEVEL OF COMPACTION: 100% of STD MDD SURCHARGE: 4.5 kg SWELL: 1.3%

8

JH

NH

MOISTURE RATIO: 101% of STD OMC SOAKING PERIOD: 4 days

CONDITION		MOISTURE CONTENT %	DRY DENSITY t/m³
At compaction		23.8	1.54
After soaking		26.5	1.52
After test	Top 30mm of sample	27.6	-
	Remainder of sample	25.6	-
Field values		22.3	-
Standard Comp	paction	23.5	1.54

RESULTS		
TYPE	PENETRATION	CBR (%)
ТОР	2.5 mm	5
104	5.0 mm	5

12

13

0.2

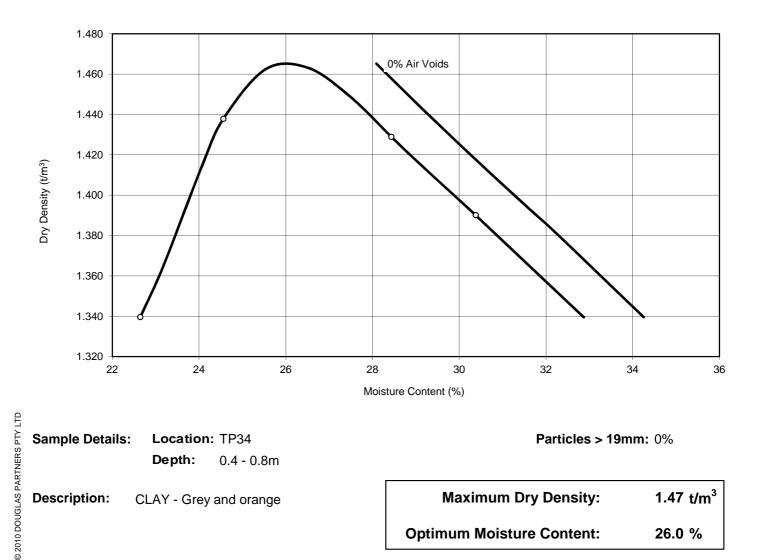
0.0

© 2010 DOUGLAS PARTNERS PTY LTD

Results of Compaction Test

Tea Gardens

Location:


Client: Cardno Pty Ltd Project No.: 81259

> Report No.: N13-102 7

Project: North Shearwater Residential Subdivision - Stage 1 Report Date: 3.4.2013

> Date of Test: 25.3.2013

Page: 1 of 1

Sample Details: Location: TP34 Particles > 19mm: 0%

Depth: 0.4 - 0.8m

CLAY - Grey and orange

Maximum Dry Density: 1.47 t/m³

26.0 %

Remarks:

Description:

Test Methods: AS 1289.2.1.1, AS 1289. 5.1.1

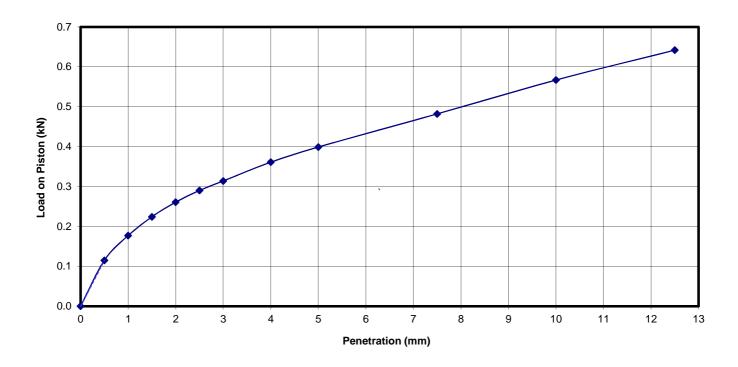
Sampling Methods: Sampled by DP Engineering Department

Optimum Moisture Content:

Result of California Bearing Ratio Test

Client: Cardno Pty Ltd Project No.: 81259

Report No.: N13-102_8


Project: North Shearwater Residential Subdivision - Stage 1 **Report Date:** 3.04.2013 Date Sampled : 5-6.03.2013

1.04.2013

Location: Tea Gardens Date of Test:

TP34 **Test Location:**

Depth / Layer: 0.4 - 0.8m Page: 1 of 1

Description: CLAY - Grey and orange

Test Method(s): AS 1289.6.1.1, AS 1289.2.1.1

Sampling Method(s): Sampled by DP Engineering Department Percentage > 19mm: 0.0%

> LEVEL OF COMPACTION: 98% of STD MDD SURCHARGE: 4.5 kg **SWELL: 2.9%**

MOISTURE RATIO: 101% of STD OMC **SOAKING PERIOD**: 4 days

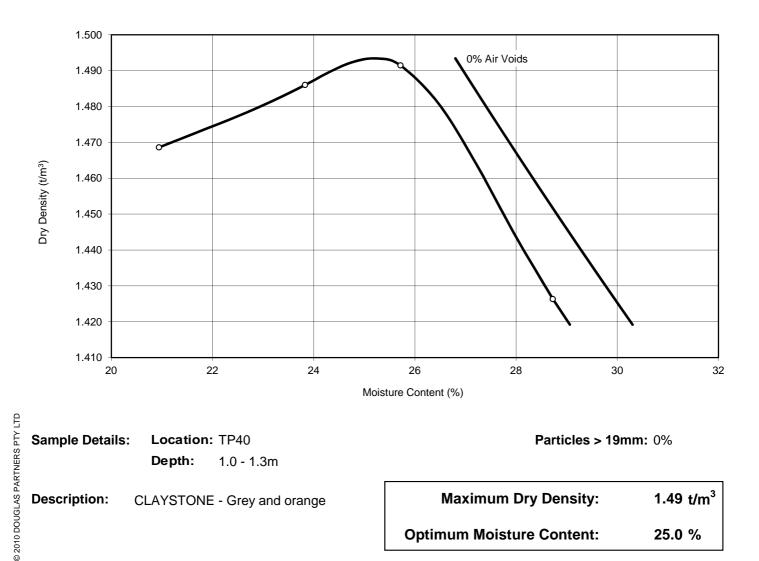
CONDITION		MOISTURE CONTENT %	DRY DENSITY t/m ³
At compaction		26.2	1.43
After soaking		30.5	1.39
After test	Top 30mm of sample	35.9	-
	Remainder of sample	31.9	-
Field values		22.6	-
Standard Comp	action	26.0	1.47

RESULTS		
TYPE	PENETRATION	CBR (%)
TOD	2.5 mm	2.0
ТОР	5.0 mm	2.0

Results of Compaction Test

Tea Gardens

Location:


Client: Cardno Pty Ltd Project No.: 81259

> Report No.: N13-102 9

Project: North Shearwater Residential Subdivision - Stage 1 Report Date: 3.4.2013

> Date of Test: 25.3.2013

Page: 1 of 1

Sample Details: Location: TP40 Particles > 19mm: 0%

Depth: 1.0 - 1.3m

Description: CLAYSTONE - Grey and orange **Maximum Dry Density:** 1.49 t/m³

Optimum Moisture Content: 25.0 %

Remarks:

Test Methods: AS 1289.2.1.1, AS 1289. 5.1.1

Sampling Methods: Sampled by DP Engineering Department

Tested:

NH

Result of California Bearing Ratio Test

Client: Cardno Pty Ltd Project No.: 81259

Project: North Shearwater Residential Subdivision - Stage 1 Report Date: 3.04.2013

Date Sampled: 5-6.03.2013

1 of 1

Date of Test: 1.04.2013

Page:

Location: Tea Gardens

Test Location: TP40

Depth / Layer : 1.0 - 1.3m

4.5 4.0 3.5 3.0 Load on Piston (kN) 2.5 2.0 1.5 1.0 0.5 0.0 5 8 10 12 13 Penetration (mm)

Description: CLAYSTONE - Grey and orange

Test Method(s): AS 1289.6.1.1, AS 1289.2.1.1

Sampling Method(s): Sampled by DP Engineering Department Percentage > 19mm: 0.0%

LEVEL OF COMPACTION: 102% of STD MDD SURCHARGE: 4.5 kg SWELL: 0.3%

MOISTURE RATIO: 98% of STD OMC SOAKING PERIOD: 4 days

CONDITION		MOISTURE CONTENT %	DRY DENSITY t/m ³
At compaction		24.5	1.52
After soaking		27.5	1.52
After test	Top 30mm of sample	24.9	-
	Remainder of sample	23.1	-
Field values		23.8	-
Standard Compaction		25.0	1.49

RESULTS		
TYPE	PENETRATION	CBR (%)
TOR	2.5 mm	17
ТОР	5.0 mm	15

JH

NH

FORM R019 REV 7 JULY 2010

© 2010 DOUGLAS PARTNERS PTY LTD

N13-102_11

Result of Shrink-Swell Index Determination

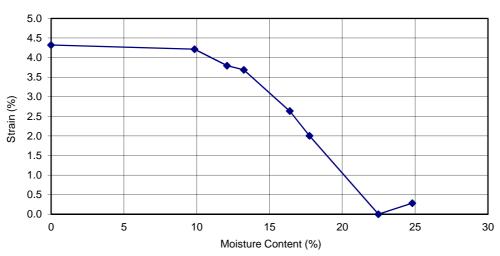
Client: Cardno Pty Ltd Project No.: 81259.00

Project: North Shearwater Subdivision Stage 1 Report Date: 3.04.2013

Date Sampled: 5-6-03.2013

Location: Tea Gardens **Date of Test**: 18.03.2013

Test Location: TP02


Depth / Layer: 0.35 - 0.65m **Page:** 1 of 1

CORE SHRINKAGE TEST

SWELL TEST

Report No.:

Shrinkage - air dried	4.2 %	Pocket penetrometer reading at initial moisture content	250 kPa
Shrinkage - oven dried	4.3 %	Docket panetrometer reading	150 kDo
Significant inert inclusions	Nil %	Pocket penetrometer reading at final moisture content	150 kPa
Extent of cracking	UC	Initial Moisture Content	23.5 %
Extent of soil crumbling	Nil %	Final Moisture Content	24.8 %
Moisture content of core	22.5 %	Swell under 25kPa	-0.3 %

SHRINK-SWELL INDEX Iss 2.4% per Δ pF

Description: CLAY - Brown

Test Method(s): AS 1289.7.1.1, AS 1289.2.1.1

Sampling Method(s): Sampled by DP Engineering Department

Extent of Cracking: UC - Uncracked HC - Highly cracked SC - Slightly cracked FR - Fractured

MC - Moderately cracked

Remarks:

Note that NATA accreditation does not cover the performance of pocket penetrometer readings

Tested: DR
Checked: DR

© 2010 DOUGLAS PARTNERS PTY LTD

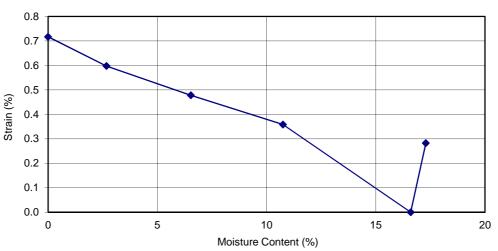
Result of Shrink-Swell Index Determination

Client: Cardno Pty Ltd Project No.: 81259.00

Project: North Shearwater Subdivision Stage 1 Report Date: 3.04.2013

Date Sampled: 5-6-03.2013

Location: Tea Gardens Date of Test: 18.03.2013


Test Location: TP13

Depth / Layer: 0.10 - 0.45m **Page:** 1 of 1

CORE SHRINKAGE TEST

SWELL TEST

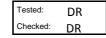
Shrinkage - air dried	0.6 %	Pocket penetrometer reading at initial moisture content	200 kPa
Shrinkage - oven dried	0.7 %	De alcot a constante atom una dia a	400 l-D-
Significant inert inclusions	<5 %	Pocket penetrometer reading at final moisture content	190 kPa
Extent of cracking	MC	Initial Moisture Content	16.6 %
Extent of soil crumbling	<5 %	Final Moisture Content	17.3 %
Moisture content of core	16.6 %	Swell under 25kPa	-0.3 %

SHRINK-SWELL INDEX Iss 0.4% per Δ pF

Description: Sandy CLAY - Grey

Test Method(s): AS 1289.7.1.1, AS 1289.2.1.1

Sampling Method(s): Sampled by DP Engineering Department


Extent of Cracking: UC - Uncracked HC - Highly cracked SC - Slightly cracked FR - Fractured

MC - Moderately cracked

Remarks: Some consolidation

Note that NATA accreditation does not cover the performance of pocket penetrometer readings

© 2010 DOUGLAS PARTNERS PTY LTD

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 15 Callistermon Close
Warabrook NSW 2304
PO Box 324
Hunter Region MC NSW 2310
Phone (02) 4960 9600
Fax (02) 4960 9601

N13-102_13

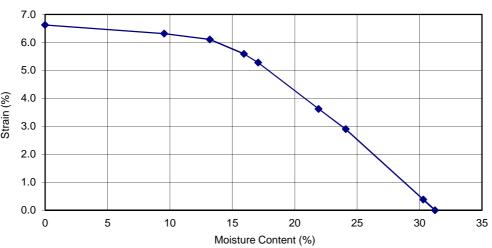
Result of Shrink-Swell Index Determination

Client: Project No.: Cardno Pty Ltd 81259.00

Project: North Shearwater Subdivision Stage 1 **Report Date:** 3.04.2013

> Date Sampled : 5-6-03.2013

Report No.:


Location: Tea Gardens **Date of Test:** 18.03.2013

Test Location: TP24A

Depth / Layer: 0.25 - 0.60m Page: 1 of 1

CORE SHRINKAGE TEST SWELL TEST

Shrinkage - air dried	6.3 %	Pocket penetrometer reading at initial moisture content	440 kPa
Shrinkage - oven dried	6.6 %	Pocket penetrometer reading	180 kPa
Significant inert inclusions	Nil %	at final moisture content	
Extent of cracking	SC	Initial Moisture Content	29.9 %
Extent of soil crumbling	Nil %	Final Moisture Content	30.3 %
Moisture content of core	31.2 %	Swell under 25kPa	-0.4 %

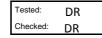
SHRINK-SWELL INDEX Iss 3.7% per Δ pF

Description: CLAY - Brown

Test Method(s): AS 1289.7.1.1, AS 1289.2.1.1

Sampling Method(s): Sampled by DP Engineering Department

Extent of Cracking: UC - Uncracked HC - Highly cracked FR - Fractured


SC - Slightly cracked

MC - Moderately cracked

Remarks:

Note that NATA accreditation does not cover the performance of pocket penetrometer readings

N13-102_14

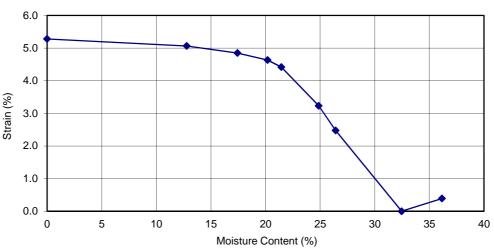
Result of Shrink-Swell Index Determination

Client: Project No.: Cardno Pty Ltd 81259.00

Project: North Shearwater Subdivision Stage 1 **Report Date:** 3.04.2013

> Date Sampled : 5-6-03.2013

Report No.:


Location: Tea Gardens **Date of Test:** 18.03.2013

Test Location: TP26

Depth / Layer: 0.10 - 0.50m Page: 1 of 1

CORE SHRINKAGE TEST SWELL TEST

Shrinkage - air dried	5.1 %	Pocket penetrometer reading at initial moisture content	380 kPa
Shrinkage - oven dried	5.3 %	Pocket penetrometer reading	330 kPa
Significant inert inclusions	Nil %	at final moisture content	000 m u
Extent of cracking	SC	Initial Moisture Content	35.4 %
Extent of soil crumbling	Nil %	Final Moisture Content	36.2 %
Moisture content of core	32.5 %	Swell under 25kPa	-0.4 %

SHRINK-SWELL INDEX Iss 2.9% per Δ pF

Description: Silty CLAY - Red and brown Test Method(s): AS 1289.7.1.1, AS 1289.2.1.1

Sampling Method(s): Sampled by DP Engineering Department

Extent of Cracking: UC - Uncracked HC - Highly cracked SC - Slightly cracked FR - Fractured

MC - Moderately cracked

Remarks: Slight consolidation

Note that NATA accreditation does not cover the performance of pocket penetrometer readings

N13-102_15

Result of Shrink-Swell Index Determination

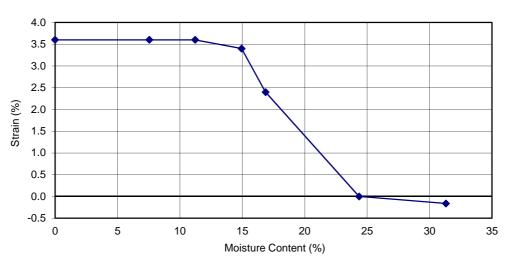
Client: Cardno Pty Ltd Project No.: 81259.00

Project: North Shearwater Subdivision Stage 1 Report Date: 3.04.2013

Date Sampled: 5-6-03.2013

Report No.:

SWELL TEST


Location: Tea Gardens **Date of Test**: 18.03.2013

Test Location: TP28

Depth / Layer: 0.10 - 0.50m **Page:** 1 of 1

CORE SHRINKAGE TEST

Shrinkage - air dried	3.6 %	Pocket penetrometer reading at initial moisture content	280 kPa
Shrinkage - oven dried	3.6 %	Docket ponetrometer reading	250 kPa
Significant inert inclusions	<5 %	Pocket penetrometer reading at final moisture content	250 KPa
Extent of cracking	SC	Initial Moisture Content	29.9 %
Extent of soil crumbling	<5 %	Final Moisture Content	31.3 %
Moisture content of core	24.4 %	Swell under 25kPa	0.2 %

SHRINK-SWELL INDEX Iss 2.0% per Δ pF

Description: Sandy CLAY - Light brown and orange

Test Method(s): AS 1289.7.1.1, AS 1289.2.1.1

Sampling Method(s): Sampled by DP Engineering Department

Extent of Cracking: UC - Uncracked HC - Highly cracked SC - Slightly cracked FR - Fractured

MC - Moderately cracked

Remarks:

Note that NATA accreditation does not cover the performance of pocket penetrometer readings

N13-102_16

Result of Shrink-Swell Index Determination

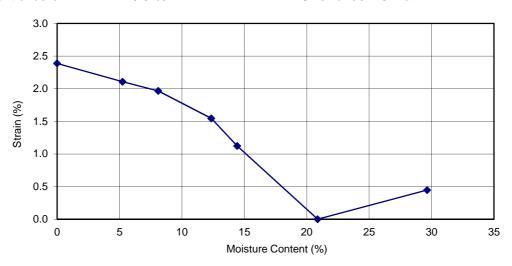
Client: Cardno Pty Ltd Project No.: 81259.00

Project: North Shearwater Subdivision Stage 1 Report Date: 3.04.2013

Date Sampled: 5-6-03.2013

Report No.:

SWELL TEST


Location: Tea Gardens Date of Test: 18.03.2013

Test Location: TP32

Depth / Layer: 0.15 - 0.30m **Page:** 1 of 1

CORE SHRINKAGE TEST

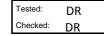
Shrinkage - air dried	2.1 %	Pocket penetrometer reading at initial moisture content	200 kPa
Shrinkage - oven dried	2.4 %	De aleat in an atria in a dia in	4.40 l-D-
Significant inert inclusions	Nil %	Pocket penetrometer reading at final moisture content	140 kPa
Extent of cracking	SC	Initial Moisture Content	27.5 %
Extent of soil crumbling	<5 %	Final Moisture Content	29.6 %
Moisture content of core	20.9 %	Swell under 25kPa	-0.4 %

SHRINK-SWELL INDEX Iss 1.3% per Δ pF

Description: Silty CLAY - Brown

Test Method(s): AS 1289.7.1.1, AS 1289.2.1.1

Sampling Method(s): Sampled by DP Engineering Department


Extent of Cracking: UC - Uncracked HC - Highly cracked SC - Slightly cracked FR - Fractured

MC - Moderately cracked

Remarks: Some consolidation

Note that NATA accreditation does not cover the performance of pocket penetrometer readings

NATA Accredited Laboratory Number: 828

N13-102_17

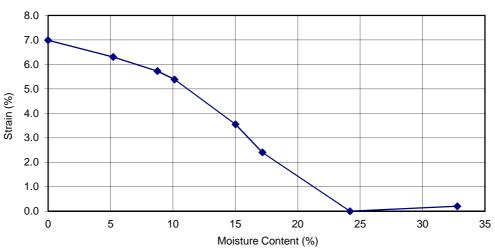
Result of Shrink-Swell Index Determination

Client: Project No.: Cardno Pty Ltd 81259.00

Report No.: Project: North Shearwater Subdivision Stage 1 **Report Date:** 3.04.2013

> Date Sampled : 5-6-03.2013

SWELL TEST


Location: Tea Gardens **Date of Test:** 18.03.2013

Test Location: TP35

Depth / Layer: 0.15 - 0.40m Page: 1 of 1

CORE SHRINKAGE TEST

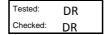
Shrinkage - air dried	6.3 %	Pocket penetrometer reading at initial moisture content	260 kPa
Shrinkage - oven dried	7.0 %	Docket populary roading	320 kPa
Significant inert inclusions	Nil %	Pocket penetrometer reading at final moisture content	320 KPa
Extent of cracking	UC	Initial Moisture Content	32.0 %
Extent of soil crumbling	Nil %	Final Moisture Content	32.8 %
Moisture content of core	24.2 %	Swell under 25kPa	-0.2 %

SHRINK-SWELL INDEX Iss 3.9% per Δ pF

Description: Silty CLAY - Brown

Test Method(s): AS 1289.7.1.1, AS 1289.2.1.1

Sampling Method(s): Sampled by DP Engineering Department


Extent of Cracking: UC - Uncracked HC - Highly cracked SC - Slightly cracked FR - Fractured

MC - Moderately cracked

Remarks: Slight consolidation

Note that NATA accreditation does not cover the performance of pocket penetrometer readings

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 15 Callistermon Close
Warabrook NSW 2304
PO Box 324
Hunter Region MC NSW 2310
Phone (02) 4960 9600
Fax (02) 4960 9601

N13-102_18

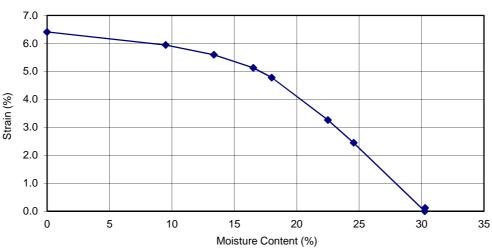
Result of Shrink-Swell Index Determination

Client: Project No.: Cardno Pty Ltd 81259.00

Report No.: Project: North Shearwater Subdivision Stage 1 **Report Date:** 3.04.2013

> Date Sampled : 5-6-03.2013

Location: Tea Gardens **Date of Test:** 18.03.2013


Test Location: TP39

Depth / Layer: 0.15 - 0.45m Page: 1 of 1

CORE SHRINKAGE TEST

SWELL TEST

Shrinkage - air dried	5.9 %	Pocket penetrometer reading at initial moisture content	130 kPa
Shrinkage - oven dried	6.4 %	Pocket penetrometer reading	160 kPa
Significant inert inclusions	Nil %	at final moisture content	100 KI a
Extent of cracking	SC	Initial Moisture Content	29.5 %
Extent of soil crumbling	Nil %	Final Moisture Content	30.3 %
Moisture content of core	30.3 %	Swell under 25kPa	-0.1 %

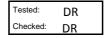
SHRINK-SWELL INDEX Iss 3.6% per Δ pF

Description: Sandy CLAY - Brown

Test Method(s): AS 1289.7.1.1, AS 1289.2.1.1

Sampling Method(s): Sampled by DP Engineering Department

Extent of Cracking: UC - Uncracked HC - Highly cracked FR - Fractured


SC - Slightly cracked

MC - Moderately cracked

Remarks:

Note that NATA accreditation does not cover the performance of pocket penetrometer readings

Douglas Partners

Geotechnics | Environment | Groundwater

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 15 Callistermon Close
Warabrook NSW 2304
PO Box 324
Hunter Region MC NSW 2310
Phone (02) 4960 9600
Fax (02) 4960 9601

N13-102_19

Result of Shrink-Swell Index Determination

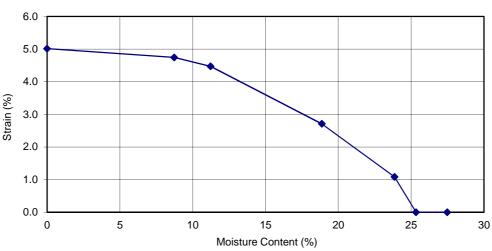
Client: Project No.: Cardno Pty Ltd 81259.00

Project: North Shearwater Subdivision Stage 1 **Report Date:** 3.04.2013

> Date Sampled : 5-6-03.2013

Location: Tea Gardens **Date of Test:** 20.03.2013

Test Location: TP42


Depth / Layer: 0.20 - 0.50m Page: 1 of 1

CORE SHRINKAGE TEST

SWELL TEST

Report No.:

Shrinkage - air dried	4.7 %	Pocket penetrometer reading at initial moisture content	200 kPa
Shrinkage - oven dried	5.0 %		
Significant inert inclusions	Nil %	Pocket penetrometer reading at final moisture content	160 kPa
Extent of cracking	SC	Initial Moisture Content	27.4 %
Extent of soil crumbling	<5 %	Final Moisture Content	27.5 %
Moisture content of core	25.3 %	Swell under 25kPa	0.0 %

SHRINK-SWELL INDEX Iss 2.8% per Δ pF

Description: Silty CLAY - Brown

Test Method(s): AS 1289.7.1.1, AS 1289.2.1.1

Sampling Method(s): Sampled by DP Engineering Department

Extent of Cracking: UC - Uncracked HC - Highly cracked SC - Slightly cracked FR - Fractured

MC - Moderately cracked

Remarks:

Note that NATA accreditation does not cover the performance of pocket penetrometer readings

Tested DR Checked: DR

© 2010 DOUGLAS PARTNERS PTY LTD

Douglas Partners Pty Ltd
ABN 75 053 980 117
www.douglaspartners.com.au
15 Callistemon Close
Warabrook NSW 2304
PO Box 324
Hunter Regional MC NSW 2310
Phone (02) 4960 9600
Fax (02) 4960 9601

Results of Moisture Content, Plasticity and Linear Shrinkage Tests

Client: Cardno Pty Ltd Project No: 81259

Project: North Shearwater Subdivision Stage 1

Report No: N13-102_20
Report Date: 3.04.2013

Date Sampled: 5-6-03.2013

Date of Test: 28.03.2013

Location: Tea Gardens Page: 1 of 1

Test Location	Depth (m)	Description	Code	W _F %	W _L %	W _P %	PI %	*LS %
TP43	0.15 – 0.35	Silty sandy CLAY – Brown	2,5	20.0	21	15	6	2.0
TP27	0.80 – 1.1	CLAY – Orange and brown	2,5	27.6	77	20	57	14.0
TP29	1.6	CLAY – Grey	2,5	27.6	53	13	40	13.5

Legend:

W_F Field Moisture Content

W_L Liquid limitW_P Plastic limitPI Plasticity index

LS Linear shrinkage from liquid limit condition (Mould length125mm)

Test Methods:

 Moisture Content:
 AS 1289 2.1.1

 Liquid Limit:
 AS 1289 3.1.2

 Plastic Limit:
 AS 1289 3.2.1

 Plasticity Index:
 AS 1289 3.3.1

 Linear Shrinkage:
 AS 1289 3.4.1

Code:

Sample history for plasticity tests

- 1. Air dried
- Low temperature (<50°C) oven dried
- 3. Oven (105°C) dried
- 4. Unknown

Method of preparation for plasticity tests

5. Dry sieved6. Wet sieved7. Natural

*Specify if sample crumbled CR or curled CU

Sampling Methods: Sampled by DP Engineering Department

Remarks:

NATA Accredited Laboratory Number: 828

This Document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025

Tested: DR Checked: DR

Douglas Partners Pty Ltd
ABN 75 053 980 117
www.douglaspartners.com.au
15 Callistemon Close
Warabrook NSW 2304
PO Box 324
Hunter Regional MC NSW 2310
Phone (02) 4960 9600
Fax (02) 4960 9601

Determination of Emerson Class Number of Soil

Client: Cardno Pty Ltd Project No: 81259

Project: North Shearwater Subdivision Stage 1

Report No: N13-102_21
Report Date: 3.04.2013

Date of Test: 2.04.2013

Location: Tea Gardens Page: 1 of 1

Sample No.	Depth (m)	Description	Water Type	Water Temp	Class No.
TP01	0.1 – 0.3	CLAY – Brown and orange	Distilled	25.0	3
TP06	0.1 – 0.3	Sandy CLAY/Clayey SAND – Brown	Distilled	25.0	5
TP09	0.3 – 0.6	Silty CLAY – Brown and grey	Distilled	25.0	3
TP13	0.2	Sandy CLAY – Grey	Distilled	25.0	3
TP17	0.2 – 0.6	Silty clayey SAND - Dark brown	Distilled	25.0	3
TP22	0.4 – 0.58	Silty CLAY – Grey	Distilled	25.0	3
TP26	0.8	CLAYSTONE – Red, orange & grey	Distilled	25.0	6
TP32	0.15	TOPSOIL: Silty SAND - Brown	Distilled	25.0	6
TP39	0.6	SANDSTONE & SILTSTONE- Orange	Distilled	25.0	2
TP41	0.5	CLAY – Grey	Distilled	25.0	5

Test Methods: AS 1289 3.8.1

Sampling Methods: Sampled by DP Engineering Department

Remarks:

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 87240

Client:

Douglas Partners Newcastle

Box 324 Hunter Region Mail Centre Newcastle NSW 2310

Attention: Patrick Heads, Joel Cowan

Sample log in details:

Your Reference: 81259, Tea Gardens

No. of samples: 30 soils

Date samples received / completed instructions received 13/03/13 13/03/13

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 21/03/13 21/03/13

Date of Preliminary Report: Not issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Results Approved By:

Nancy Zhang

Chemist

Reporting Supervisor

Inorganics Supervisor

Alex MacLean Chemist

Jeremy Faircloth Chemist

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	87240-2	87240-7	87240-8	87240-9	87240-10
Your Reference		Pit4	Pit 37	Pit 39	Pit 41	D4
Depth		0.1	0.1	0.1	0.1	-
Date Sampled		06/03/2013	05/03/2013	06/03/2013	06/03/2013	06/03/2013
Type of sample		soil	soil	soil	soil	soil
Date extracted	=	18/03/2013	18/03/2013	18/03/2013	18/03/2013	18/03/2013
Date analysed	-	19/03/2013	19/03/2013	19/03/2013	19/03/2013	19/03/2013
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	89	96	94	92	94

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	87240-2	87240-7	87240-8	87240-9	87240-10
Your Reference		Pit4	Pit37	Pit39	Pit 41	D4
Depth		0.1	0.1	0.1	0.1	-
Date Sampled		06/03/2013	05/03/2013	06/03/2013	06/03/2013	06/03/2013
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	18/03/2013	18/03/2013	18/03/2013	18/03/2013	18/03/2013
Date analysed	-	19/03/2013	19/03/2013	19/03/2013	19/03/2013	19/03/2013
TRHC10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	90	91	89	91	90

PAHs in Soil						
Our Reference:	UNITS	87240-2	87240-7	87240-8	87240-9	87240-10
Your Reference		Pit4	Pit37	Pit39	Pit 41	D4
Depth		0.1	0.1	0.1	0.1	-
Date Sampled		06/03/2013	05/03/2013	06/03/2013	06/03/2013	06/03/2013
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	18/03/2013	18/03/2013	18/03/2013	18/03/2013	18/03/2013
Date analysed	-	19/03/2013	19/03/2013	19/03/2013	19/03/2013	19/03/2013
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d ₁₄	%	87	102	101	99	102

Organochlorine Pesticides in soil						
Our Reference:	UNITS	87240-1	87240-2	87240-3	87240-4	87240-5
Your Reference		Pit 1	Pit 4	Pit 13	Pit 17	Pit23
Depth		0.1	0.1	0.1	0.05	0.05-0.1
Date Sampled Type of sample		06/03/2013 soil	06/03/2013 soil	06/03/2013 soil	05/03/2013 soil	05/03/2013 soil
			5011	5011	5011	SUII
Date extracted	-	18/03/2013	18/03/2013	18/03/2013	18/03/2013	18/03/2013
Date analysed	-	18/03/2013	18/03/2013	18/03/2013	18/03/2013	18/03/2013
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	96	100	101	106	94

		Π	T			Π
Organochlorine Pesticides in soil	LINITO	07040.0	07040.7	07040.0	07040.0	07040 40
Our Reference: Your Reference	UNITS	87240-6 Pit 27	87240-7 Pit37	87240-8 Pit 39	87240-9 Pit 41	87240-10 D4
Depth		0.1	0.1	0.1	0.1	
Date Sampled		06/03/2013	05/03/2013	06/03/2013	06/03/2013	06/03/2013
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	18/03/2013	18/03/2013	18/03/2013	18/03/2013	18/03/2013
Date analysed	-	18/03/2013	18/03/2013	18/03/2013	18/03/2013	18/03/2013
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	97	97	96	97	96

Organophosphorus Pesticides						
Our Reference:	UNITS	87240-1	87240-2	87240-3	87240-4	87240-5
Your Reference		Pit 1	Pit4	Pit 13	Pit 17	Pit 23
Depth		0.1	0.1	0.1	0.05	0.05-0.1
Date Sampled		06/03/2013	06/03/2013	06/03/2013	05/03/2013	05/03/2013
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	18/03/2013	18/03/2013	18/03/2013	18/03/2013	18/03/2013
Date analysed	-	18/03/2013	18/03/2013	18/03/2013	18/03/2013	18/03/2013
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	96	100	101	106	94

Organophosphorus Pesticides						
Our Reference:	UNITS	87240-6	87240-7	87240-8	87240-9	87240-10
Your Reference		Pit 27	Pit 37	Pit 39	Pit 41	D4
Depth		0.1	0.1	0.1	0.1	-
Date Sampled		06/03/2013	05/03/2013	06/03/2013	06/03/2013	06/03/2013
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	18/03/2013	18/03/2013	18/03/2013	18/03/2013	18/03/2013
Date analysed	-	18/03/2013	18/03/2013	18/03/2013	18/03/2013	18/03/2013
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	97	97	96	97	96

PCBs in Soil						
Our Reference:	UNITS	87240-2	87240-7	87240-8	87240-9	87240-10
Your Reference		Pit4	Pit37	Pit39	Pit 41	D4
Depth		0.1	0.1	0.1	0.1	-
Date Sampled		06/03/2013	05/03/2013	06/03/2013	06/03/2013	06/03/2013
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	18/03/2013	18/03/2013	18/03/2013	18/03/2013	18/03/2013
Date analysed	-	18/03/2013	18/03/2013	18/03/2013	18/03/2013	18/03/2013
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	100	97	96	97	96

Acid Extractable metals in soil						
Our Reference:	UNITS	87240-1	87240-2	87240-3	87240-4	87240-5
Your Reference		Pit 1	Pit4	Pit 13	Pit 17	Pit 23
Depth		0.1	0.1	0.1	0.05	0.05-0.1
Date Sampled		06/03/2013	06/03/2013	06/03/2013	05/03/2013	05/03/2013
Type of sample		soil	soil	soil	soil	soil
Date digested	-	18/03/2013	18/03/2013	18/03/2013	18/03/2013	18/03/2013
Date analysed	-	18/03/2013	18/03/2013	18/03/2013	18/03/2013	18/03/2013
Arsenic	mg/kg	5	6	7	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	8	12	8	1	3
Copper	mg/kg	2	27	16	2	<1
Lead	mg/kg	20	12	11	6	11
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	1	12	8	<1	<1
Zinc	mg/kg	11	50	35	7	5

Acid Extractable metals in soil						
Our Reference:	UNITS	87240-6	87240-7	87240-8	87240-9	87240-10
Your Reference		Pit 27	Pit 37	Pit 39	Pit 41	D4
Depth		0.1	0.1	0.1	0.1	-
Date Sampled		06/03/2013	05/03/2013	06/03/2013	06/03/2013	06/03/2013
Type of sample		soil	soil	soil	soil	soil
Date digested	-	18/03/2013	18/03/2013	18/03/2013	18/03/2013	18/03/2013
Date analysed	-	18/03/2013	18/03/2013	18/03/2013	18/03/2013	18/03/2013
Arsenic	mg/kg	<4	<4	8	<4	12
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	3	1	5	2	6
Copper	mg/kg	<1	<1	<1	2	<1
Lead	mg/kg	10	6	22	10	34
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	<1	<1	<1	<1
Zinc	mg/kg	2	3	6	4	8

Moisture						
Our Reference:	UNITS	87240-1	87240-2	87240-3	87240-4	87240-5
Your Reference		Pit 1	Pit4	Pit 13	Pit 17	Pit23
Depth		0.1	0.1	0.1	0.05	0.05-0.1
Date Sampled		06/03/2013	06/03/2013	06/03/2013	05/03/2013	05/03/2013
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	18/03/13	18/03/13	18/03/13	18/03/13	18/03/13
Date analysed	-	19/03/13	19/03/13	19/03/13	19/03/13	19/03/13
Moisture	%	28	20	20	21	29
Moisture						
Our Reference:	UNITS	87240-6	87240-7	87240-8	87240-9	87240-10
Your Reference		Pit 27	Pit37	Pit 39	Pit 41	D4
Depth		0.1	0.1	0.1	0.1	-
Date Sampled		06/03/2013	05/03/2013	06/03/2013	06/03/2013	06/03/2013
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	18/03/13	18/03/13	18/03/13	18/03/13	18/03/13
Date analysed	-	19/03/13	19/03/13	19/03/13	19/03/13	19/03/13
Moisture	%	18	17	17	22	22

Miscellaneous Inorg - soil		1				
Our Reference:	UNITS	87240-11	87240-12	87240-13	87240-14	87240-15
Your Reference		Pit 2	Pit 2	Pit 6	Pit 9	Pit 9
Depth		0.1	0.3	0.15	0.15	0.4
Date Sampled		06/03/2013	06/03/2013	06/03/2013	06/03/2013	06/03/2013
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	16/03/2013	16/03/2013	16/03/2013	16/03/2013	16/03/2013
Date analysed	-	16/03/2013	16/03/2013	16/03/2013	16/03/2013	16/03/2013
Electrical Conductivity 1:5 soil:water	μS/cm	19	26	25	30	36
Miscellaneous Inorg - soil						
Our Reference:	UNITS	87240-16	87240-17	87240-18	87240-19	87240-20
Your Reference		Pit 12	Pit 12	Pit 17	Pit 17	Pit 22
Depth		0.15	0.5	0.05	0.4	0.1
Date Sampled		06/03/2013	05/03/2013	05/03/2013	05/03/2013	05/03/2013
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	16/03/2013	16/03/2013	16/03/2013	16/03/2013	16/03/2013
Date analysed	_	16/03/2013	16/03/2013	16/03/2013	16/03/2013	16/03/2013
Electrical Conductivity 1:5 soil:water	μS/cm	35	32	69	28	82
-	,					
Miscellaneous Inorg - soil						
Our Reference:	UNITS	87240-21	87240-22	87240-23	87240-24	87240-25
Your Reference		Pit 22	Pit 28	Pit 28	Pit31	Pit34
Depth		0.4	0.1	0.4	0.1	0.1
Date Sampled		05/03/2013	06/03/2013	06/03/2013	06/03/2013	06/03/2013
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	16/03/2013	16/03/2013	16/03/2013	16/03/2013	16/03/2013
Date analysed	-	16/03/2013	16/03/2013	16/03/2013	16/03/2013	16/03/2013
Electrical Conductivity 1:5 soil:water	μS/cm	57	34	67	38	30
Miccollonoous Issue soil						<u> </u>
Miscellaneous Inorg - soil	LINITO	07040 00	07040 07	07040 00	07040 00	07040 00
Our Reference:	UNITS	87240-26	87240-27	87240-28	87240-29	87240-30
Your Reference		Pit 34	Pit 36	Pit 36	Pit 41	Pit 41
Depth Data Sampled		0.3	0.1	0.3	0.1	0.3
Date Sampled Type of sample		06/03/2013 soil	05/03/2013 soil	05/03/2013 soil	06/03/2013 soil	06/03/2013 soil
Date prepared	-	16/03/2013	16/03/2013	16/03/2013	16/03/2013	16/03/2013
Date analysed	-	16/03/2013	16/03/2013	16/03/2013	16/03/2013	16/03/2013
	1	1	1	i	1	1

ESP/CEC						
Our Reference:	UNITS	87240-11	87240-13	87240-14	87240-17	87240-18
Your Reference		Pit2	Pit6	Pit9	Pit 12	Pit 17
Depth		0.1	0.15	0.15	0.5	0.05
Date Sampled		06/03/2013	06/03/2013	06/03/2013	05/03/2013	05/03/2013
Type of sample		soil	soil	soil	soil	soil
Exchangeable Ca	meq/100g	2.2	0.8	0.5	0.2	5.2
Exchangeable K	meq/100g	0.1	0.1	0.1	0.1	0.6
Exchangeable Mg	meq/100g	2.1	0.60	0.43	3.9	1.3
Exchangeable Na	meq/100g	<0.1	<0.1	<0.1	0.12	<0.1
Cation Exchange Capacity	meq/100g	4.5	1.6	1.1	4.3	7.2
ESP	%	[NT]	[NT]	[NT]	2.8	[NT]

ESP/CEC						
Our Reference:	UNITS	87240-21	87240-22	87240-25	87240-28	87240-30
Your Reference		Pit 22	Pit 28	Pit34	Pit36	Pit 41
Depth		0.4	0.1	0.1	0.3	0.3
Date Sampled		05/03/2013	06/03/2013	06/03/2013	05/03/2013	06/03/2013
Type of sample		soil	soil	soil	soil	soil
Exchangeable Ca	meq/100g	1.6	2.2	1.8	0.6	0.4
Exchangeable K	meq/100g	0.4	0.3	0.1	0.1	0.1
Exchangeable Mg	meq/100g	2.6	1.7	0.95	2.7	3.8
Exchangeable Na	meq/100g	<0.1	<0.1	<0.1	0.11	1.0
Cation Exchange Capacity	meq/100g	4.7	4.2	2.9	3.5	5.4
ESP	%	[NT]	[NT]	[NT]	3.1	18.7

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 draft Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 draft Guideline on Investigation Levels for Soil and Groundwater.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM draft B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105 deg C for a minimum of 4 hours.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell and dedicated meter, in accordance with APHA 22nd ED 2510 and Rayment & Lyons.
Metals-009	Determination of exchangeable cations and cation exchange capacity in soil based on Rayment and Lyons 2011.

Client Reference: 81259, Tea Gardens								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Soil						Base II Duplicate II %RPD		
Date extracted	-			18/03/2 013	87240-2	18/03/2013 18/03/2013	LCS-4	18/03/2013
Date analysed	-			19/03/2 013	87240-2	19/03/2013 19/03/2013	LCS-4	19/03/2013
TRHC6 - C9	mg/kg	25	Org-016	<25	87240-2	<25 <25	LCS-4	87%
TRHC6 - C10	mg/kg	25	Org-016	<25	87240-2	<25 <25	LCS-4	87%
vTPHC6 - C10 less BTEX(F1)	mg/kg	25	Org-016	[NT]	87240-2	<25 <25	[NR]	[NR]
Benzene	mg/kg	0.2	Org-016	<0.2	87240-2	<0.2 <0.2	LCS-4	75%
Toluene	mg/kg	0.5	Org-016	<0.5	87240-2	<0.5 <0.5	LCS-4	83%
Ethylbenzene	mg/kg	1	Org-016	<1	87240-2	<1 <1	LCS-4	86%
m+p-xylene	mg/kg	2	Org-016	<2	87240-2	<2 <2	LCS-4	96%
o-Xylene	mg/kg	1	Org-016	<1	87240-2	<1 <1	LCS-4	99%
naphthalene	mg/kg	1	Org-014	<1	87240-2	<1 <1	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%		Org-016	101	87240-2	89 93 RPD:4	LCS-4	103%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Soil						Base II Duplicate II %RPD		
Date extracted	-			18/03/2 013	87240-2	18/03/2013 18/03/2013	LCS-4	18/03/2013
Date analysed	-			19/03/2 013	87240-2	19/03/2013 19/03/2013	LCS-4	19/03/2013
TRHC10 - C14	mg/kg	50	Org-003	<50	87240-2	<50 <50	LCS-4	96%
TRHC 15 - C28	mg/kg	100	Org-003	<100	87240-2	<100 <100	LCS-4	106%
TRHC29 - C36	mg/kg	100	Org-003	<100	87240-2	<100 <100	LCS-4	71%
TRH>C10-C16	mg/kg	50	Org-003	<50	87240-2	<50 <50	LCS-4	96%
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	50	Org-003	[NT]	87240-2	<50 <50	[NR]	[NR]
TRH>C16-C34	mg/kg	100	Org-003	<100	87240-2	<100 <100	LCS-4	106%
TRH>C34-C40	mg/kg	100	Org-003	<100	87240-2	<100 <100	LCS-4	71%
Surrogate o-Terphenyl	%		Org-003	90	87240-2	90 99 RPD: 10	LCS-4	97%

			ent Reference	ce: 81	1259, Tea Ga	ardens		
QUALITY CONTROL PAHs in Soil	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery
		+						
Date extracted	-			18/03/2 013	87240-2	18/03/2013 18/03/2013	LCS-4	18/03/2013
Date analysed	-			19/03/2 013	87240-2	19/03/2013 19/03/2013	LCS-4	19/03/2013
Naphthalene	mg/kg	0.1	Org-012 subset	<0.1	87240-2	<0.1 <0.1	LCS-4	64%
Acenaphthylene	mg/kg	0.1	Org-012 subset	<0.1	87240-2	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012 subset	<0.1	87240-2	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012 subset	<0.1	87240-2	<0.1 <0.1	LCS-4	99%
Phenanthrene	mg/kg	0.1	Org-012 subset	<0.1	87240-2	<0.1 <0.1	LCS-4	100%
Anthracene	mg/kg	0.1	Org-012 subset	<0.1	87240-2	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012 subset	<0.1	87240-2	<0.1 <0.1	LCS-4	94%
Pyrene	mg/kg	0.1	Org-012 subset	<0.1	87240-2	<0.1 <0.1	LCS-4	101%
Benzo(a)anthracene	mg/kg	0.1	Org-012 subset	<0.1	87240-2	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012 subset	<0.1	87240-2	<0.1 <0.1	LCS-4	96%
Benzo(b+k)fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	87240-2	<0.2 <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	87240-2	<0.05 <0.05	LCS-4	110%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1	87240-2	<0.1 <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	87240-2	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	87240-2	<0.1 <0.1	[NR]	[NR]
Benzo(a)pyrene TEQ	mg/kg	0.5	Org-012 subset	[NT]	87240-2	<0.5 <0.5	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012 subset	105	87240-2	87 94 RPD:8	LCS-4	87%

Client Reference: 81259, Tea Gardens								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organochlorine Pesticides in soil						Base II Duplicate II %RPD		
Date extracted	-			18/03/2 013	87240-2	18/03/2013 18/03/2013	LCS-3	18/03/2013
Date analysed	-			18/03/2 013	87240-2	18/03/2013 18/03/2013	LCS-3	18/03/2013
HCB	mg/kg	0.1	Org-005	<0.1	87240-2	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	87240-2	<0.1 <0.1	LCS-3	88%
gamma-BHC	mg/kg	0.1	Org-005	<0.1	87240-2	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	0.1	Org-005	<0.1	87240-2	<0.1 <0.1	LCS-3	114%
Heptachlor	mg/kg	0.1	Org-005	<0.1	87240-2	<0.1 <0.1	LCS-3	95%
delta-BHC	mg/kg	0.1	Org-005	<0.1	87240-2	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	0.1	Org-005	<0.1	87240-2	<0.1 <0.1	LCS-3	89%
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	87240-2	<0.1 <0.1	LCS-3	98%
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	87240-2	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	87240-2	<0.1 <0.1	[NR]	[NR]
Endosulfan I	mg/kg	0.1	Org-005	<0.1	87240-2	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	0.1	Org-005	<0.1	87240-2	<0.1 <0.1	LCS-3	99%
Dieldrin	mg/kg	0.1	Org-005	<0.1	87240-2	<0.1 <0.1	LCS-3	95%
Endrin	mg/kg	0.1	Org-005	<0.1	87240-2	<0.1 <0.1	LCS-3	82%
pp-DDD	mg/kg	0.1	Org-005	<0.1	87240-2	<0.1 <0.1	LCS-3	95%
Endosulfan II	mg/kg	0.1	Org-005	<0.1	87240-2	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	0.1	Org-005	<0.1	87240-2	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	87240-2	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	87240-2	<0.1 <0.1	LCS-3	90%
Methoxychlor	mg/kg	0.1	Org-005	<0.1	87240-2	<0.1 <0.1	[NR]	[NR]
Surrogate TCMX	%		Org-005	113	87240-2	100 104 RPD:4	LCS-3	100%

81259, Tea Gardens **Client Reference:** QUALITYCONTROL UNITS PQL **METHOD** Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery Organophosphorus Base II Duplicate II % RPD **Pesticides** Date extracted 18/03/2 87240-2 18/03/2013 | 18/03/2013 LCS-3 18/03/2013 013 Date analysed 18/03/2 87240-2 18/03/2013 || 18/03/2013 LCS-3 18/03/2013 013 Diazinon mg/kg 0.1 Org-008 <0.1 87240-2 <0.1||<0.1 [NR] [NR] Dimethoate 0.1 Org-008 <0.1 87240-2 <0.1 || <0.1 [NR] [NR] mg/kg Org-008 87240-2 Chlorpyriphos-methyl 0.1 <0.1 <0.1 || <0.1 [NR] [NR] mg/kg Ronnel 0.1 Org-008 <0.1 87240-2 <0.1||<0.1 [NR] [NR] mg/kg Chlorpyriphos 0.1 Org-008 <0.1 87240-2 <0.1||<0.1 LCS-3 100% mg/kg LCS-3 107% Fenitrothion 0.1 Org-008 <0.1 87240-2 <0.1||<0.1 mg/kg Bromophos-ethyl 0.1 Org-008 <0.1 87240-2 <0.1||<0.1 [NR] [NR] mg/kg **Ethion** 0.1 Org-008 <0.1 87240-2 <0.1||<0.1 LCS-3 101% mg/kg 87240-2 LCS-3 % Org-008 113 100 || 104 || RPD: 4 104% Surrogate TCMX Blank QUALITYCONTROL UNITS PQL **METHOD Duplicate Duplicate results** Spike Sm# Spike % Sm# Recovery PCBs in Soil Base II Duplicate II % RPD 18/03/2 87240-2 18/03/2013 | 18/03/2013 LCS-3 Date extracted 18/03/2013 013 18/03/2 87240-2 18/03/2013 || 18/03/2013 LCS-3 18/03/2013 Date analysed 013 Arochlor 1016 mg/kg 0.1 Org-006 <0.1 87240-2 <0.1 || <0.1 [NR] [NR] Arochlor 1221 mg/kg 0.1 Org-006 < 0.1 87240-2 <0.1 || <0.1 [NR] [NR] 87240-2 Arochlor 1232 mg/kg 0.1 Org-006 <0.1 <0.1||<0.1 [NR] [NR] Arochlor 1242 mg/kg 0.1 Org-006 <0.1 87240-2 <0.1||<0.1 [NR] [NR] Arochlor 1248 mg/kg 0.1 Org-006 < 0.1 87240-2 <0.1 || <0.1 [NR] [NR] Arochlor 1254 mg/kg 0.1 Org-006 <0.1 87240-2 <0.1||<0.1 LCS-3 105% Arochlor 1260 mg/kg 0.1 Org-006 <0.1 87240-2 <0.1||<0.1 [NR] [NR] % Org-006 113 87240-2 100 || 104 || RPD: 4 LCS-3 112% Surrogate TCLMX UNITS PQL Blank QUALITYCONTROL METHOD **Duplicate Duplicate results** Spike Sm# Spike % Sm# Recovery Acid Extractable metals Base II Duplicate II % RPD in soil 18/03/2 87240-2 18/03/2013 | 18/03/2013 LCS-1 **Date digested** 18/03/2013 013 18/03/2 18/03/2013 | 18/03/2013 LCS-1 Date analysed 87240-2 18/03/2013 013 Metals-020 87240-2 6||7||RPD:15 LCS-1 97% Arsenic 4 mg/kg <4 **ICP-AES** Cadmium 0.4 Metals-020 <0.4 87240-2 <0.4||<0.4 LCS-1 99% mg/kg **ICP-AES** Chromium mg/kg 1 Metals-020 <1 87240-2 12||12||RPD:0 LCS-1 100%

> ICP-AES Metals-020

ICP-AES Metals-020

ICP-AES Metals-021

CV-AAS

<1

<1

< 0.1

87240-2

87240-2

87240-2

27 || 26 || RPD: 4

12||13||RPD:8

<0.1||<0.1

Envirolab Reference: 87240 Revision No: R 00

mg/kg

mg/kg

mg/kg

1

1

0.1

Copper

Lead

Mercury

98%

98%

101%

LCS-1

LCS-1

LCS-1

Client Reference: 81259, Tea Gardens PQL QUALITYCONTROL UNITS METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery Acid Extractable metals Base II Duplicate II % RPD in soil Nickel 1 Metals-020 87240-2 12||11||RPD:9 LCS-1 101% mg/kg <1 **ICP-AES** Zinc Metals-020 87240-2 50||50||RPD:0 LCS-1 99% mg/kg 1 <1 **ICP-AES** QUALITYCONTROL UNITS PQL METHOD Blank Moisture Date prepared [NT] [NT] Date analysed Moisture Inorg-008 [NT] % 0.1 QUALITYCONTROL **UNITS** PQL METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery

16/03/2

013 16/03/2

013

<1

<0.1

<0.1

<0.1

<0.1

Blank

87240-11

87240-11

87240-11

87240-11

87240-11

87240-11

87240-11

Duplicate

Sm#

Base II Duplicate II % RPD

16/03/2013 || 16/03/2013

16/03/2013 || 16/03/2013

19||29||RPD:42

Base II Duplicate II % RPD

2.2||2.2||RPD:0

0.1 || 0.1 || RPD: 0

2.1 || 2.1 || RPD: 0

<0.1||<0.1

Duplicate results

LCS-1

LCS-1

LCS-1

LCS-1

LCS-1

LCS-1

LCS-1

Spike Sm#

16/03/2013

16/03/2013

104%

Spike %

Recovery

99%

103%

99%

104%

Cation Exchange Capacity	meq/100 g	1	Metals-009	<1.0	87240-11	4.5 4.5 RPD:0	[NR]	[]	NR]
ESP	%	1	Metals-009	<1.0	[NT]	[NT]	[NR]	[١	NR]
QUALITYCONTROL	UNITS	ı	Dup. Sm#		Duplicate	Spike Sm#	Spike % Recovery		
Miscellaneous Inorg - soil				Base + D	Ouplicate+%RP	D			
Date prepared	-	8	37240-21	16/03/2	013 16/03/2013	B LCS-2	16/03/2013	3	
Date analysed	-	8	37240-21	16/03/2	013 16/03/2013	B LCS-2	16/03/2013	3	
Electrical Conductivity 1:5 soil:water	μS/cm	8	37240-21	57	58 RPD:2	LCS-2	102%		

Envirolab Reference: 87240 R 00 Revision No:

Miscellaneous Inorg - soil Date prepared

Date analysed

Electrical Conductivity

1:5 soil:water QUALITYCONTROL

Exchangeable Ca

Exchangeable K

Exchangeable Mg

Exchangeable Na

ESP/CEC

μS/cm

meq/100

meq/100

g

meq/100

meq/100

UNITS

1

0.1

0.1

0.1

0.1

PQL

Inorg-002

Metals-009

Metals-009

Metals-009

Metals-009

METHOD

Report Comments:

ESP: Where the exchangeable Sodium is less than the PQL, the ESP is cannot be calculated.

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NA: Test not required RPD: Relative Percent Difference NA: Test not required

<: Less than >: Greater than LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

Envirolab Reference: 87240 Page 19 of 19

Revision No: R 00

Envirolab Services Pty Ltd ABN 37 112 535 645

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 187303

Client Details	
Client	Douglas Partners Newcastle
Attention	Joel Cowan
Address	Box 324 Hunter Region Mail Centre, Newcastle, NSW, 2310

Sample Details	
Your Reference	81259.01, Prop. North Shearwater Sub, Tea Gardens
Number of Samples	23 Soil
Date samples received	15/03/2018
Date completed instructions received	15/03/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details						
Date results requested by	22/03/2018					
Date of Issue	22/03/2018					
NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with ISO/I	EC 17025 - Testing. Tests not covered by NATA are denoted with *					

Results Approved By

Dragana Tomas, Senior Chemist Jeremy Faircloth, Organics Supervisor Long Pham, Team Leader, Metals Priya Samarawickrama, Senior Chemist **Authorised By**

David Springer, General Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		187303-1	187303-2	187303-14	187303-16	187303-23
Your Reference	UNITS	101	102	303	304	D1
Depth		0.5	1.0	0.05	0.05	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/03/2018	16/03/2018	16/03/2018	16/03/2018	16/03/2018
Date analysed	-	16/03/2018	16/03/2018	16/03/2018	16/03/2018	16/03/2018
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	102	98	97	97	100

svTRH (C10-C40) in Soil						
Our Reference		187303-1	187303-2	187303-14	187303-16	187303-23
Your Reference	UNITS	101	102	303	304	D1
Depth		0.5	1.0	0.05	0.05	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/03/2018	16/03/2018	16/03/2018	16/03/2018	16/03/2018
Date analysed	-	17/03/2018	17/03/2018	17/03/2018	17/03/2018	17/03/2018
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	84	86	83	85	84

PAHs in Soil						
Our Reference		187303-1	187303-2	187303-14	187303-16	187303-23
Your Reference	UNITS	101	102	303	304	D1
Depth		0.5	1.0	0.05	0.05	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/03/2018	16/03/2018	16/03/2018	16/03/2018	16/03/2018
Date analysed	-	16/03/2018	16/03/2018	16/03/2018	16/03/2018	16/03/2018
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	95	100	105	102	100

Organochlorine Pesticides in soil						
Our Reference		187303-1	187303-2	187303-4	187303-5	187303-7
Your Reference	UNITS	101	102	201	203	205
Depth		0.5	1.0	0.05	0.05	0.05
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/03/2018	16/03/2018	16/03/2018	16/03/2018	16/03/2018
Date analysed	-	16/03/2018	16/03/2018	16/03/2018	16/03/2018	16/03/2018
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	88	104	101	90	85

Organochlorine Pesticides in soil						
Our Reference		187303-10	187303-14	187303-16	187303-18	187303-23
Your Reference	UNITS	210	303	304	310	D1
Depth		0.05	0.05	0.05	0.05	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/03/2018	16/03/2018	16/03/2018	16/03/2018	16/03/2018
Date analysed	-	16/03/2018	16/03/2018	16/03/2018	16/03/2018	16/03/2018
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	87	100	89	98	101

Organophosphorus Pesticides						
Our Reference		187303-1	187303-2	187303-4	187303-5	187303-7
Your Reference	UNITS	101	102	201	203	205
Depth		0.5	1.0	0.05	0.05	0.05
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/03/2018	16/03/2018	16/03/2018	16/03/2018	16/03/2018
Date analysed	-	16/03/2018	16/03/2018	16/03/2018	16/03/2018	16/03/2018
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	88	104	101	90	85

Organophosphorus Pesticides						
Our Reference		187303-10	187303-14	187303-16	187303-18	187303-23
Your Reference	UNITS	210	303	304	310	D1
Depth		0.05	0.05	0.05	0.05	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/03/2018	16/03/2018	16/03/2018	16/03/2018	16/03/2018
Date analysed	-	16/03/2018	16/03/2018	16/03/2018	16/03/2018	16/03/2018
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	87	100	89	98	101

Envirolab Reference: 187303

Revision No: R00

PCBs in Soil						
Our Reference		187303-1	187303-2	187303-14	187303-16	187303-23
Your Reference	UNITS	101	102	303	304	D1
Depth		0.5	1.0	0.05	0.05	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/03/2018	16/03/2018	16/03/2018	16/03/2018	16/03/2018
Date analysed	-	16/03/2018	16/03/2018	16/03/2018	16/03/2018	16/03/2018
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	88	104	100	89	101

Acid Extractable metals in soil						
Our Reference		187303-1	187303-2	187303-4	187303-5	187303-7
Your Reference	UNITS	101	102	201	203	205
Depth		0.5	1.0	0.05	0.05	0.05
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	16/03/2018	16/03/2018	16/03/2018	16/03/2018	16/03/2018
Date analysed	-	16/03/2018	16/03/2018	16/03/2018	16/03/2018	16/03/2018
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	3	3	2	2	1
Copper	mg/kg	<1	2	1	4	1
Lead	mg/kg	10	9	6	6	2
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	1	1	<1	<1
Zinc	mg/kg	2	7	6	12	6

Acid Extractable metals in soil						
Our Reference		187303-10	187303-14	187303-16	187303-18	187303-23
Your Reference	UNITS	210	303	304	310	D1
Depth		0.05	0.05	0.05	0.05	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	16/03/2018	16/03/2018	16/03/2018	16/03/2018	16/03/2018
Date analysed	-	16/03/2018	16/03/2018	16/03/2018	16/03/2018	16/03/2018
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	1	5	3	3	7
Copper	mg/kg	<1	<1	<1	<1	2
Lead	mg/kg	8	15	14	9	18
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	2	<1	<1	2
Zinc	mg/kg	5	14	7	5	15

Moisture						
Our Reference		187303-1	187303-2	187303-4	187303-5	187303-7
Your Reference	UNITS	101	102	201	203	205
Depth		0.5	1.0	0.05	0.05	0.05
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	16/03/2018	16/03/2018	16/03/2018	16/03/2018	16/03/2018
Date analysed	-	19/03/2018	19/03/2018	19/03/2018	19/03/2018	19/03/2018
Moisture	%	8.3	10	10	10	9.0

Moisture						
Our Reference		187303-10	187303-14	187303-16	187303-18	187303-23
Your Reference	UNITS	210	303	304	310	D1
Depth		0.05	0.05	0.05	0.05	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	16/03/2018	16/03/2018	16/03/2018	16/03/2018	16/03/2018
Date analysed	-	19/03/2018	19/03/2018	19/03/2018	19/03/2018	19/03/2018
Moisture	%	8.1	13	13	15	14

Misc Inorg - Soil						
Our Reference		187303-3	187303-4	187303-5	187303-6	187303-7
Your Reference	UNITS	107	201	203	203	205
Depth		0.4	0.05	0.05	0.2	0.05
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/03/2018	20/03/2018	20/03/2018	20/03/2018	20/03/2018
Date analysed	-	20/03/2018	20/03/2018	20/03/2018	20/03/2018	20/03/2018
Electrical Conductivity 1:5 soil:water	μS/cm	30	38	120	35	54
Misc Inorg - Soil						
Our Reference		187303-8	187303-9	187303-10	187303-11	187303-12
Your Reference	UNITS	205	207	210	210	211
Depth		0.2	0.1	0.05	0.25	0.2-0.6
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/03/2018	20/03/2018	20/03/2018	20/03/2018	20/03/2018
Date analysed	-	20/03/2018	20/03/2018	20/03/2018	20/03/2018	20/03/2018
Electrical Conductivity 1:5 soil:water	μS/cm	22	73	210	150	38
Misc Inorg - Soil						
Our Reference		187303-13	187303-14	187303-15	187303-16	187303-17
Your Reference	UNITS	213	303	303	304	304
Depth		0.2	0.05	0.15	0.05	0.25
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/03/2018	20/03/2018	20/03/2018	20/03/2018	20/03/2018
Date analysed	-	20/03/2018	20/03/2018	20/03/2018	20/03/2018	20/03/2018
Electrical Conductivity 1:5 soil:water	μS/cm	54	57	56	46	76
Misc Inorg - Soil						
Our Reference		187303-18	187303-19	187303-20	187303-21	187303-22
Your Reference	UNITS	310	310	312	313	314
Depth		0.05	0.15	0.7-1.0	0.2	0.5-0.7
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/03/2018	20/03/2018	20/03/2018	20/03/2018	20/03/2018
Date analysed	-	20/03/2018	20/03/2018	20/03/2018	20/03/2018	20/03/2018
Electrical Conductivity 1:5 soil:water	μS/cm	54	25	510	31	330

ESP/CEC						
Our Reference		187303-5	187303-6	187303-12	187303-14	187303-15
Your Reference	UNITS	203	203	211	303	303
Depth		0.05	0.2	0.2-0.6	0.05	0.15
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	19/03/2018	19/03/2018	19/03/2018	19/03/2018	19/03/2018
Date analysed	-	19/03/2018	19/03/2018	19/03/2018	19/03/2018	19/03/2018
Exchangeable Ca	meq/100g	4.8	0.9	1.3	2.4	2.0
Exchangeable K	meq/100g	0.4	0.1	0.2	0.3	0.2
Exchangeable Mg	meq/100g	1.8	3.2	3.7	1.9	8.1
Exchangeable Na	meq/100g	<0.1	0.17	0.19	0.12	0.80
Cation Exchange Capacity	meq/100g	7.1	4.4	5.4	4.8	11
ESP	%	[NT]	4	3	3	7

ESP/CEC						
Our Reference		187303-16	187303-17	187303-18	187303-19	187303-20
Your Reference	UNITS	304	304	310	310	312
Depth		0.05	0.25	0.05	0.15	0.7-1.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	19/03/2018	19/03/2018	19/03/2018	19/03/2018	19/03/2018
Date analysed	-	19/03/2018	19/03/2018	19/03/2018	19/03/2018	19/03/2018
Exchangeable Ca	meq/100g	1.3	1.4	1.3	0.6	1.1
Exchangeable K	meq/100g	0.2	0.3	0.2	<0.1	<0.1
Exchangeable Mg	meq/100g	1.3	6.3	1.0	0.55	2.7
Exchangeable Na	meq/100g	0.12	0.73	<0.1	<0.1	0.82
Cation Exchange Capacity	meq/100g	2.9	8.7	2.5	1.3	4.8
ESP	%	4	8	[NT]	[NT]	17

Method ID	Methodology Summary
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-009	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual
	ECD's. Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.

Envirolab Reference: 187303

Revision No: R00

Method ID	Methodology Summary
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:-
	 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" li="" mid-point="" most="" pql.="" stipulated="" the=""> </pql></pql></pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum
	of the positive individual Xylenes.

ROL: vTRH	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil escription Units PQL Method Bla							Spike Recovery %		
Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]	
-			16/03/2018	1	16/03/2018	16/03/2018		16/03/2018		
-			16/03/2018	1	16/03/2018	16/03/2018		16/03/2018		
mg/kg	25	Org-016	<25	1	<25	<25	0	90		
mg/kg	25	Org-016	<25	1	<25	<25	0	90		
mg/kg	0.2	Org-016	<0.2	1	<0.2	<0.2	0	80		
mg/kg	0.5	Org-016	<0.5	1	<0.5	<0.5	0	88		
mg/kg	1	Org-016	<1	1	<1	<1	0	92		
mg/kg	2	Org-016	<2	1	<2	<2	0	95		
mg/kg	1	Org-016	<1	1	<1	<1	0	92		
mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]		
%		Org-016	101	1	102	89	14	102		
	Units - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Units PQL - mg/kg 25 mg/kg 25 mg/kg 0.2 mg/kg 0.5 mg/kg 1 mg/kg 2 mg/kg 1 mg/kg 1 mg/kg 1	Units PQL Method	Units PQL Method Blank - 16/03/2018 - 16/03/2018 mg/kg 25 Org-016 <25	Units PQL Method Blank # - 16/03/2018 1 - 16/03/2018 1 mg/kg 25 Org-016 <25	Units PQL Method Blank # Base - 16/03/2018 1 16/03/2018 1 16/03/2018 - 16/03/2018 1 16/03/2018 1 16/03/2018 mg/kg 25 Org-016 <25	Units PQL Method Blank # Base Dup. - 16/03/2018 1 16/03/2018 16/03/2018 16/03/2018 16/03/2018 - 16/03/2018 1 16/03/2018 16/03/2018 16/03/2018 16/03/2018 mg/kg 25 Org-016 <25	Units PQL Method Blank # Base Dup. RPD - 16/03/2018 1 16/03/2018 16/03/2018 16/03/2018 16/03/2018 - 16/03/2018 1 16/03/2018 16/03/2018 16/03/2018 16/03/2018 mg/kg 25 Org-016 <25	Units PQL Method Blank # Base Dup. RPD LCS-3 - 1 16/03/2018 1 16/03/2018 16/03/2018 16/03/2018 16/03/2018 - 1 16/03/2018 1 16/03/2018 16/03/2018 16/03/2018 mg/kg 25 Org-016 <25	

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Duplicate			Spike Re		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]	
Date extracted	-			16/03/2018	1	16/03/2018	16/03/2018		16/03/2018		
Date analysed	-			17/03/2018	1	17/03/2018	17/03/2018		17/03/2018		
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	1	<50	<50	0	110		
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	1	<100	<100	0	97		
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	1	<100	<100	0	108		
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	1	<50	<50	0	110		
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	1	<100	<100	0	97		
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	1	<100	<100	0	108		
Surrogate o-Terphenyl	%		Org-003	88	1	84	84	0	96		

QUA	LITY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			16/03/2018	1	16/03/2018	16/03/2018		16/03/2018	
Date analysed	-			16/03/2018	1	16/03/2018	16/03/2018		16/03/2018	
Naphthalene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	97	
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	
Acenaphthene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	
Fluorene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	95	
Phenanthrene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	101	
Anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	
Fluoranthene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	94	
Pyrene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	99	
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	
Chrysene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	103	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	<0.2	1	<0.2	<0.2	0	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	1	<0.05	<0.05	0	107	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012	100	1	95	99	4	118	

QUALITY CC	NTROL: Organo	chlorine I	Pesticides in soil			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			16/03/2018	1	16/03/2018	16/03/2018		16/03/2018	
Date analysed	-			16/03/2018	1	16/03/2018	16/03/2018		16/03/2018	
НСВ	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	
alpha-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	113	
gamma-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	
beta-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	108	
Heptachlor	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	90	
delta-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	
Aldrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	110	
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	112	
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	
Endosulfan I	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	
pp-DDE	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	116	
Dieldrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	124	
Endrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	105	
pp-DDD	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	92	
Endosulfan II	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	
pp-DDT	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	120	
Methoxychlor	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-005	109	1	88	106	19	100	

QUALITY CC	NTROL: Organ	ophosph	orus Pesticides			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			16/03/2018	1	16/03/2018	16/03/2018		16/03/2018	
Date analysed	-			16/03/2018	1	16/03/2018	16/03/2018		16/03/2018	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	90	
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	
Diazinon	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	
Dichlorvos	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	83	
Dimethoate	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	
Ethion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	91	
Fenitrothion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	98	
Malathion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	101	
Parathion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	113	
Ronnel	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	97	
Surrogate TCMX	%		Org-008	109	1	88	106	19	104	

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	Spike Re	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			16/03/2018	1	16/03/2018	16/03/2018		16/03/2018	
Date analysed	-			16/03/2018	1	16/03/2018	16/03/2018		16/03/2018	
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	101	
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	
Surrogate TCLMX	%		Org-006	109	1	88	106	19	104	[NT]

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	plicate		Spike Re	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]		
Date prepared	-			16/03/2018	1	16/03/2018	16/03/2018		16/03/2018	[NT]		
Date analysed	-			16/03/2018	1	16/03/2018	16/03/2018		16/03/2018	[NT]		
Arsenic	mg/kg	4	Metals-020	<4	1	<4	<4	0	101	[NT]		
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	93	[NT]		
Chromium	mg/kg	1	Metals-020	<1	1	3	3	0	102	[NT]		
Copper	mg/kg	1	Metals-020	<1	1	<1	<1	0	110	[NT]		
Lead	mg/kg	1	Metals-020	<1	1	10	13	26	96	[NT]		
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	102	[NT]		
Nickel	mg/kg	1	Metals-020	<1	1	<1	<1	0	98	[NT]		
Zinc	mg/kg	1	Metals-020	<1	1	2	2	0	93	[NT]		

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Dι	ıplicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	[NT]	
Date prepared	-			[NT]	[NT]		[NT]	[NT]	16/03/2018		
Date analysed	-			[NT]	[NT]		[NT]	[NT]	16/03/2018		
Arsenic	mg/kg	4	Metals-020	[NT]	[NT]		[NT]	[NT]	104		
Cadmium	mg/kg	0.4	Metals-020	[NT]	[NT]		[NT]	[NT]	96		
Chromium	mg/kg	1	Metals-020	[NT]	[NT]		[NT]	[NT]	105		
Copper	mg/kg	1	Metals-020	[NT]	[NT]		[NT]	[NT]	113		
Lead	mg/kg	1	Metals-020	[NT]	[NT]		[NT]	[NT]	98		
Mercury	mg/kg	0.1	Metals-021	[NT]	[NT]		[NT]	[NT]	98		
Nickel	mg/kg	1	Metals-020	[NT]	[NT]		[NT]	[NT]	101		
Zinc	mg/kg	1	Metals-020	[NT]	[NT]		[NT]	[NT]	95		

QUALITY	CONTROL:	Misc Ino	rg - Soil			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date prepared	-			20/03/2018	13	20/03/2018	20/03/2018		20/03/2018	
Date analysed	-			20/03/2018	13	20/03/2018	20/03/2018		20/03/2018	
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	<1	13	54	56	4	95	

QUALITY	CONTROL	Misc Ino	rg - Soil			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	3	20/03/2018	20/03/2018			[NT]
Date analysed	-			[NT]	3	20/03/2018	20/03/2018			[NT]
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	[NT]	3	30	33	10		[NT]

QUAL	ITY CONTR	OL: ESP/	CEC			Du	Duplicate			covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date prepared	-			19/03/2018	5	19/03/2018	19/03/2018		19/03/2018	
Date analysed	-			19/03/2018	5	19/03/2018	19/03/2018		19/03/2018	
Exchangeable Ca	meq/100g	0.1	Metals-009	<0.1	5	4.8	4.6	4	94	
Exchangeable K	meq/100g	0.1	Metals-009	<0.1	5	0.4	0.4	0	105	
Exchangeable Mg	meq/100g	0.1	Metals-009	<0.1	5	1.8	1.7	6	93	
Exchangeable Na	meq/100g	0.1	Metals-009	<0.1	5	<0.1	<0.1	0	95	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 187303 Page | 25 of 26

Revision No: R00

Report Comments

ESP: Where the exchangeable Sodium is less than the PQL and CEC is less than 10meq/100g, the ESP cannot be calculated.

Envirolab Reference: 187303 Page | **26 of 26** Revision No: R00

Appendix D

Quality Assurance / Quality Control Report Chain of Custody Sheets (Field and Despatch) Sample Receipts

Quality Assurance/Quality Control Report Geotechnical, Preliminary Contamination and Salinity Investigation Proposed North Shearwater Residential Subdivision – Stage 1 Off Viney Creek Road, Tea Gardens

Quality Assurance (QA) was maintained by:

- Compliance with a Project Quality Plan written for the objectives of the study;
- Using qualified engineers/scientists to undertake the field supervision and sampling;
- Following the Douglas Partners Pty Ltd (DP) operating procedures for sampling, field testing and decontamination as presented in Table D1;
- Using NATA registered laboratories for sample testing that generally utilise standard laboratory methods of the US EPA, the APHA and NSW EPA.

Table D1: Field Procedures

Abbreviation	Procedure Name
FPM LOG	Logging
FPM DECONT	Decontamination of Personnel and Equipment
FPM ENVID	Sample Identification, Handling, Transport and Storage of Contamination Samples
FPM PIDETC	Operation of Field Analysers
FPM ENVSAMP	Sampling of Contaminated Soils

Notes: From DP Field Procedures Manual

Quality Control (QC) of the laboratory programme was achieved by the following means:

- Check replicate a specific sample was split in the field, placed in separate containers and labelled with different sample numbers, and sent to the laboratory for analysis;
- Method blanks the laboratory ran reagent blanks to confirm the equipment and standards used were uncontaminated;
- Laboratory replicates the laboratory split samples internally and conducted tests on separate extracts:
- Laboratory spikes samples were spiked by the laboratory with a known concentration of contaminants and subsequently tested for percent recovery;

Discussion

A. Check Replicate

The Relative Percent Difference (RPD) between replicate results is used as a measure of laboratory reproducibility and is given by the following:

$$RPD = \frac{ABS (Replicate result 1 - Replicate result 2)}{(Replicate result 1 + Replicate result 2)/2} \times 100$$

The RPD can have a value between 0% and 200%. An RPD data quality objective of up to 50% is generally considered to be acceptable for organic analysis, and 35% for inorganics (i.e. Metals).

A summary of the results of the soil replicate QA/QC testing is provided in Table D2.

Table D2: Results of Quality Control Analysis

	Analyte	Pit 39/0.1	D4	RPD (%)
	As	8	12	40
	Cd	<0.4	<0.4	N/A
	Cr	5	6	18
Metals	Cu	<1	<1	N/A
Wietais	Pb	22	34	43
	Hg	<0.1	<0.1	N/A
	Ni	<1	<1	N/A
	Zn	6	8	29
	C ₆ - C ₉	<25	<25	N/A
TRH	C ₁₀ - C ₁₄	<50	<50	N/A
IKI	C ₁₅ - C ₂₈	<100	<100	N/A
	C ₂₉ - C ₃₆	<100	<100	N/A
	Benzene	<0.2	<0.2	N/A
BTEX	Toluene	<0.5	<0.5	N/A
DIEX	Ethyl Benzene	<1	<1	N/A
	Xylene	<3	<3	N/A
PAH	Total	<1.55	<1.55	N/A
РАП	Benzo(a)pyrene	<0.05	<0.05	N/A
	Total	<2	<2	N/A
	Aldrin + Dieldrin	<0.2	<0.2	N/A
OCPs	Chlordane	<0.2	<0.2	N/A
	DDT	<0.1	<0.1	N/A
	Heptachlor	<0.1	<0.1	N/A
OPPs		<0.8	<0.8	N/A
PCBs		<0.7	<0.7	N/A

Notes to Table D2:

Results expressed in mg/kg on dry weight basis

N/A - Not Applicable

Slightly elevated RPDs were found for arsenic and lead: The elevated RPDs may be attributed to relatively low concentrations, which results in high RPDs.

B. Method Blanks

All method blanks returned results lower than the laboratory detection limit, therefore are acceptable.

C. Laboratory Duplicates

The average RPD for individual contaminants ranges from 0% to 42%, with the all of RPDs within laboratory control limits. The results are therefore considered to be acceptable.

D. Laboratory Spikes

Recoveries in the order of 70% to 130% are generally considered to be acceptable for inorganic material and 60% to 140% for organic material. The average percent recovery for individual contaminants ranged from 64% to 114%, the lower limit being for naphthalene. The results are within the quality control objectives. The results should however be qualified and may slightly underestimate or over-estimate contaminant concentrations in certain samples (ie biased low or high respectively).

Conclusions

In summary, while some elevated results were found, they can be attributed to the relatively low concentration of contaminants.

The accuracy and precision of the soil testing procedures, as inferred by the laboratory QA/QC data is considered to be of sufficient standard to allow the data reported to be used in interpret site contamination conditions.

CHAIN OF CUSTODY FIELD SHEET

Project No:	81259	401			Client Pro	oject Nan	ne: Propose	d No-M	Heaval	er Resid	lembial Si	ilodiu's ra	
Client: Wol	in loves	. hneeds			Location:	Tea	Garden	. S					_
Project Manag	ger: 📐	sel Coi	سمف						DP Lab Re	eceived	By: ථ	skc	Date: 영(왕/18
Do samples c	ontain 'pot	ential' HBN	//? Yes! !	lo√ (If YES	, then hand	ile, transp	ort and store	in accorda	nce with FPN	1 HAZID)			
				Field					DP Lab	F	or Despatch	to	Notes
Sample	Depth	Duplicate	Sample Type	Container Type	ASS		Sampling		Storage	Lab 1 ^A	Lab 2 ^B	Lab 3 ^c	-
ID	(m)	Sample	S - soil W - water	G - glass P - plastic	Samples	Ву	Date	Time	Locn *	Date	Date	Date	
(0)	6.05		5	GP		Ske	7/3/18						
	0.5		,										
	t-i												
102	1.0									1			
	2-0												
20	0.05												
203	0-05									/			
	0.2			, market						V			
205	0.05									✓			
	0-2			-						V			
210	0-05									//			
	0-25						1			V			
303	0.05	ICI				j	8/3/18						
	C-15		***************************************			1							
304	0.05		7 7										
	0-25			Ý		U	V			V			
			No. of the contract of the con										

^{*} Default storage: glass containers in fridge, plastic containers shelved, ASS in freezer, water samples in fridge

A Provide name of Lab 1 Envirolab B Provide name of Lab 2

C Provide name of Lab 3

FPM - ENVID/Form COC 01

CHAIN OF CUSTODY FIELD SHEET

Project No:	8125	4-01			Client Pro	oject Nar	ne:						
Client:					Location:							,	
Project Mana	ıger:								DP Lab Re	eceived	Ву:		Date:
Do samples	contain 'pot	ential' HBN	//? Yes 1	Not: (If YES	, then hand	lle, transp	oort and store	in accorda	nce with FPN	/ HAZID)	····		
	711			Field					DP Lab	F	or Despatch	to	Notes
Sample	Depth	Duplicate	Sample Type	Container Type	ASS		Sampling		Storage	Lab 1 ^A	Lab 2 ^B	Lab 3 ^c	
ID			S - soil G - W - water P - p	G - glass P - plastic	Samples	Ву	Date	Time	Locn *	Date	Date	Date	
310	0.05		5	GP		SM(8/3/18						
	0.15		S	GP		الال	V						
				,									
						·							
													·

A Provide name of Lab 1

B Provide name of Lab 2

C Provide name of Lab 3

^{*} Default storage: glass containers in fridge, plastic containers shelved, ASS in freezer, water samples in fridge

Client:	Cara	lno f	ty LE	el			
Project:	Norm S	hew wat	(1/25.	Subs	Project No:	8)259	•••••
Location:	Viney	Crech Rd	Tod	hovdens	Project No:		•••••

	Ţ		Fie	ld				DP Office	Dooretti		
	Depth (m)	Duplicate/ Replicate	eplicate Type			Sampling		Received by:	Despatch	Notes	
-017		Sample	Sample	S-soil W-water	G-glass P-plastic	Ву	Date	Time	Storage Location*	Date:	
TP23 TP24	0.05-0.1		S	G P	KMF	5/3/13	8.30	Cosky/bulk			
	0.05		. 2	c.l			9:00	Estly / buth			
T124	0.35			P			9:05	bulle	_		
TP24A	0.25			Ρ	200		9:30	bulk			
TP2Z	0.1			GP			. 9:50	Bhy Ibulk	. /		
TP22	0.4	<u></u>		Ρ			10:00	Bulk			
TPZI	0.1			60			10:20	Esky Ibile		·	
TPZO	C - 1			C.P			10:50	Eshy/bulle			
TP70	C.6			?			11:10	bulk			
TPIA	0.05			G. P.			/1:3c	Khu /bulk			
TPIG	0.3			'P			11:45	bulk			
TP35	0.1			a, p			17:00	Chy/bille			
TP35	0.2			P			. 12:10	Esting / buther		· · · · · · · · · · · · · · · · · · ·	
TP35	O · L.			ρ			.12:10	bulk			
TC36	0.(G P			72:2 2	Bhy /bulk			
TP36	0.3						12:35	bille			
TP36	0.7			P			12:35	brike			
TP36 TP4Z	0.85.			,		ļ <u> </u>	12:40	bulh			
	0.3						12:50	Esky/bulk		····	
TP42	V·>		**	Ρ		L 4	1:00	brik			

Default containers for soil: glass = clear 125/250 mL with teflon liner, plastic =press seal bag *Default storage: Glass containers in fridge, plastic containers shelved, all water samples in fridge

Client:	L'o	vdro	Ph	s lt	d			
Project:	North	Shew i	vister	les.	Sub	Project No:	81259	******
Location:	V!sey	creek	. Rd _y	7.64	Gas	YELENS	**********************	******

·			Fie	ld				DP Office	D()	Notes
	Depth (m)	Duplicate/ Replicate	Sample Type S-soil	Container Type		Sampling		Received by:	Despatch Date:	
- 0		W-wa	W-water	G-glass P-plastic	Ву	Date	Time	Storage Location*		
TP18	0.05-0.1		S	G P	KMF	5/3/13	1:20	Chu /bulk		
TP17	0.05		1	G P		1	2:00			
TP17	0.4	·		P			2:10	Bulh		· · · · · · · · · · · · · · · · · · ·
TP15	0.05			68			2:30	Estry Ibulk		······
TP43	0.1			G.P			2:45	4		
TPIO	0.(<u> </u>		a P			3:10			
TP16	0.1	OZ		4 P			3:40			
TP37	0.1			G P			4:20	V		
TP37	0.3			0			4:30	Bulk		
TP37	c.6			ρ			4:35	Bulk		
TP14	0.1	03		Ci P			4:55	Esky / bulk		··········
TP14	0.2		4	P		<u>/</u>	5:05	Bylk		
			ļ.,,							
					·			<u> </u>		
					······································					
	 									
	 									
μ			 		· · · · · · · · · · · · · · · · · · ·	1				
······								<u> </u>		

Default containers for soil: glass = clear 125/250 mL with teflon liner, plastic =press seal bag *Default storage: Glass containers in fridge; plastic containers shelved, all water samples in fridge

Client:	Cardro Pty Ltd	
Project:	North Shewwater Residential Sub. Miney Cretk Ad. Tea Grander	Project No. 8/256
Location:	Virey Cretk Rd. Tea Garder	S

			Fie	eld				DD Office		
Sample ID Depth (m)	Duplicate/ Replicate Sample	Sample Type S-soil	Container Type G-glass		Sampling		DP Office Received by: Date:	Despatch	Notes	
-10-		- Jumpio	W-water	P-plastic	Ву	Date	Time	Storage Location*	Date:	
TP25	0-1		S	G P	KMF	6/3/13.	6:50	Estry /bulh		
TP25	0.4,		. 1	7	, and the second	1	7:05	bulk		
TP25	0.9			ρ			7:05	· bulk		
TP32	0.15			40			7:30	Estry Ibrila		
TP32	0.45			P			7:40	bulk		
TP33	0.2			G.P			7:50	total bulk		
TP34	0.1			G P			8:05	Esky ibvik		
TP40	0-1			C.P		5,1100 00 00	8:30	Estry 16 clk		
TP40	0.5		Ì	P	TOTAL PARTY.		8:45	bulk		
TP40	1.0			P		***************************************	8:45	b~1k		
TP09	0.15			Ci P			9:15	Esky/bulk		
TPO9	0.4			ρ	V).		9:25	bulk.		······································
TP38	0-15			a.C.			9:45	Estry 1 bulk		
TP39	0.1	04/		G P			10:10	Estry / bolk		
TP39	0.6			Ρ		Vers and appropriate	10:20	Bulk		····
TPO7	0.2			G,P			(0:50	Esky / bulk		
TP06	0.15			C.P			11:20	.0	V	. "
TPOS	0-1		1	G P			12:00	J		
Tros	0.5			P			12:15	bulk		
TPZL	0.1		J	a, P	/	1 <i>y</i>	12:30	Estry / bulk		

Default containers for soil: glass = clear 125/250 mL with teffon liner, plastic =press seal bag *Default storage: Glass containers in fridge, plastic containers shelved, all water samples in fridge

Client:	Cardno Pty Lt.	d	
Project:	North Shewwater Re	S. Sub. Project No. 8	1759
Location:	Viney Creek Rd	Tea Gordens	*****************

		· • • • • • • • • • • • • • • • • • • •	Fie	ld				DP Office	D	
Sample ID	Depth (m)	Duplicate/ Replicate	Sample Type S-soil	Container Type		Sampling		Received by:	Despatch	Notes
		Sample	W-water	G-glass P-plastic	Ву	Date	Time	Storage Location*	Date:	
TPZ6	0-3		S	P	KMF	6/3/13	12:45	bulk		
TP 26	0-8			P	1	i	12:50	bulk		· · · · · · · · · · · · · · · · · · ·
TPZF	0.1		, , , , , , , , , , , , , , , , , , ,	GP			1:00	Estry /bulk		
TP27	0-7			P			1:10	bulk		
TPZ7	1.2			ρ			. 1:10	bulk		
TP31	0-1			G P			1:30	Chy /buik		
TP Z8	0.1			G P			1:50	V 1	/	
TP28	0.4			P			2:00	bulh		
TPZ9	0.1			GP			2:20	Estry / bulk		
TP 29	1.0			P			2:30	bulk		
TPZa	1.6			P	To record the second		2:35	bulk		
TP03	0.1			6 P			3:00	Gray 1 bille		
TP03	0.3			. P			. 3:10	bulh		
TP03	0.5			P			3: /5	bc/k		
TPOI	0.1			4.0			3:30	Esky /bulk	lim ^e .	
TPOI	0.25			P			3:40			
TPOZ	0-1			G.P	***	_	4:00	Estry / bulk	/	<u></u>
TPOZ	0.3			P			4:00	Bulk		
TPOZ	0.5		1	P			4:10	bulk		
TP04	0.1		J	4.P	\forall		4:30	. Esty /bulk		

Default containers for soil: glass = clear 125/250 mL with teflon liner, plastic =press seal bag *Default storage: Glass containers in fridge, plastic containers shelved, all water samples in fridge

Client:	Cordno Pty Ital	•		
Project:	North Shewwoter Res.	Sub	Project No:	81759
Location:	Viney Creek Rd,	Tea	Gardens	
	U '			********************

	T		Fie	ld				DP Office		
Sample ID	Depth (m)	Duplicate/ Replicate Sample	Sample Type S-soil	Container Type G-glass		Sampling		Received by:	Despatch	Notes
60		Sample	W-water	P-plastic	Ву	Date	Time	Storage Location*	Date:	
TP04	0.3		S	P	KMF	6/3/13	4.40	bulh		
TP41	0.1		1	a P			5:00	Estry /bulle		
TP41	0.3			P			5:10	bulk		
TPLI	0.5	 		ρ			5:75	bulh		
TPOS	0.1	<u> </u>		6,0			5 30	Ester 1 bulk		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
TP08	0.3	<u> </u>		ρ			5:40	both		
TPII	0.1			G.P			6:00	Eshy Ibulk		
TP13	C-1	05		40			6:15	Ghy /bolk		
TP13	0-2			P			6:20	bulk		
TP12	0.15			60			6:30	Estry /bulk	/	
TPIZ	0.5		<u> </u>	Þ	y	Ψ	6:40	bulk		
	ļ	<u> </u>					<u> </u>			
							ļ. :			
									-	-
·	<u></u>									
						<u> </u>	<u> </u>			
										· · · · · · · · · · · · · · · · · · ·
+	<u> </u>									

Default containers for soil: glass = clear 125/250 mL with teflon liner, plastic =press seal bag *Default storage: Glass containers in fridge, plastic containers shelved, all water samples in fridge

CHAIN OF CUSTODY DESPATCH SHEET

Project No:	81259	9.01			Suburi):	Tea G	ardens	<u> </u>	To:	Énv	irolab			
Project Name:	Propo	sed North	Shearwate	Subdivision	Order	Number	136434	1							
Project Manage					Sample	er:	Joel Co	owan		Attn: Simon Song					
Emails:			uglaspartr	iers.com.au						Phone: (02) 9910 6200					
Date Required:		day 🗆	24 hours		urs 🛮	72 hou	rs 🛛	Standard	✓	Email:	sso	ng@env	/irolab.co	m.au	
Prior Storage:	□ Esk	y ✓ Frid	ge 🗆 Sh		Do sam	oles contai	n 'potentia	al' HBM?	Yes []	No ✓	(If YES, the	en handle, 1	transport and	store in accordance with FPM HAZID)	
		pled	Sample Type	Container Type					Analytes			<u>. </u>			
Sample ID	Lab ID	Date Sampled	S - soil W - water	G - glass P - plastic	Combo 6	OCP	9 9 9	Metals (8)	CEC + ESP	O O	•			Notes/preservation	
101/0.5			S	G	Х		_								
102/1.0	2		S	G	Х								STREET, OR	Envirolab Services	
107/0.4	3		S	Р						- X			ENVÎRSAND	62 Ashley St Chatswood NSW 2067 Ph: (62) 9910 5300	
201/0.05	4		S	G		Х	Х	X		Х			Job No:	187303	
203/0.05	5		S	G		X	Х	, X	Х	Х			Date Recei		
203/0.2	Ó		S	Р					Х	Х			Time Recei Received h	ved: ·= 10. €5	
205/0.05	7		S	<u>G</u>		Х	Χ	Х		Х			Temp: Cool		
205/0,2	8		S	Р						Х			Security: In	act/Broken/None 10 2_	
207/0.1	ġ		S	P						X					
210/0.05	Ó		S	G		X	X	X		Х					
210/0.25	11		S	Р						Х					
211/0.2-0. <u>6</u>	12		S	Р			<u></u>		X	Х					
213/0.2	13		S	_ P						X					
303/0.05	14-		S	G	Х				X	X					
303/0.15	15		S	Р					x	X				· · · · · · · · · · · · · · · · · · ·	
PQL (S) mg/kg PQL = practical	arrantit	ation limit	If none of	von default	to Labora	ton, Math	and Date	ation Limit				ANZEC	C PQLs re	eq'd for all water analytes	
Metals to Analys					io Labora	tiory wetr	iou Detec	MON LIMIT		Lab Re	ort/Refe	erence N	lo:		
Total number of	sample	s in conta	iner: 2	3 Relin	quished	by: J	RC	Transpoi	rted to lai	boratory b	y:	_ 		TNT	
Send Results to	: Do	ouglas Partr						7 <i>7</i> 22				Phone:		Fax: 10-45	
Signed:				Received by	<u>r:</u>			Plan			Date & Ti	me: [5	13/10(d W-43	

CHAIN OF CUSTODY DESPATCH SHEET

Project Name: Proposed North Shearwater Subdivision Order Number 136434 Sampler: José Covers Sample Destruction Order Number 136434 Sampler: José Covers Sample Destruction Order Number Sample Destruction Order Number Order	Project No:	81259	9.01			Suburi	٠·	Tea Ga	rdens		To:	Env	irolab		
Project Manager-Joel Cowan Sample Joel Cowan Joel Cowan Joel Cowan Joel Cowan Joel Cowan Joel Cowan Joel Cowan Joel Cowan Joel Cowan Joel Cowan Joel Cowan Joel Cowan Jo	T			Shearwate	Subdivision					-	10.	L! 1Y	IIOIAD		
Date Required: Same day 24 hours 4 hours 24 hours											Attn:	Sim	on Sona		
Date Required: Same day Date				uglaspartr	iers.com.au										
Prior Storage: □ Esky	Date Required:						72 hou	rs 🛛	Standard	✓					om.au
Sample Lab D			y ✓ Frid	ge □ Sh	nelved ·	Do sam	ples contai	n 'potentia	I' HBM?	Yes 🖸			***************************************		
304/0.05 1/3 S G X X X X X X X X X			Jate		I I					Analytes					
304/0.25	ID	. ID	Sampling I	S - soil W - water	G - glass P - plastic	Сотро 6	ОСР	OPP	Metals (8)	CEC + ESP	EC				Notes/preservation
304/0.25 1/3 S G S X X X X X X X X X	304/0.05	9		S	G	Х				х	Х	_			
310/0.05 19	304/0.25	17		S	G					Х	Х				
Siz/0.7-1.0 20	310/0.05	18	<u>.</u>	S	G		Х	Х	Х					İ	
312/0.7-1.0 20	310/0.15	19		S	Р					X	х				
313/0.2 2	312/0.7-1.0	20		S	Р										
S	313/0.2	21		S	Р										
D1 7.3 S G X	314/0.5-0.7			S	Р					_					
PQL = practical quantitation limit. If none given, default to Laboratory Method Detection Limit Metals to Analyse: 8HM unless specified here: Total number of samples in container:	D1			S	G	Х									
PQL = practical quantitation limit. If none given, default to Laboratory Method Detection Limit Metals to Analyse: 8HM unless specified here: Total number of samples in container:			-··· - ···												-
PQL = practical quantitation limit. If none given, default to Laboratory Method Detection Limit Metals to Analyse: 8HM unless specified here: Total number of samples in container:							_					_		<u> </u>	
PQL = practical quantitation limit. If none given, default to Laboratory Method Detection Limit Metals to Analyse: 8HM unless specified here: Total number of samples in container:		_								-					-
PQL = practical quantitation limit. If none given, default to Laboratory Method Detection Limit Metals to Analyse: 8HM unless specified here: Total number of samples in container:						-									
PQL = practical quantitation limit. If none given, default to Laboratory Method Detection Limit Metals to Analyse: 8HM unless specified here: Total number of samples in container:															-
PQL = practical quantitation limit. If none given, default to Laboratory Method Detection Limit Metals to Analyse: 8HM unless specified here: Total number of samples in container:			_										<u> </u>	 	
PQL = practical quantitation limit. If none given, default to Laboratory Method Detection Limit Metals to Analyse: 8HM unless specified here: Total number of samples in container:															
PQL = practical quantitation limit. If none given, default to Laboratory Method Detection Limit Metals to Analyse: 8HM unless specified here: Total number of samples in container:	PQL (S) mg/kg									+			AN7FC	C POI e	reg'd for all water analytes. □
Metals to Analyse: 8HM unless specified here: Total number of samples in container: Relinquished by: JRC Transported to laboratory by: TNT Send Results to: Douglas Partners Pty Ltd Address: Phone: Fax:		quantita	ation limit.	If none gi	ven, default i	to Labora	atory Meth	od Detec	tion Limit				-		od = 101 dit trator dimiyes ()
Send Results to: Douglas Partners Pty Ltd Address: Phone: Fax:	Metals to Analys	se: 8HM	unless sp	ecified her	e:							=	erence N	lo:	
							by: J	RC-	Transpor	ted to lat	oratory	by:			
Signed: Date & Time: 1513 h.o.1 &		: Do	ouglas Partr												
	<u> </u>	_			Heceived by	r:	12	q				Date & T	me:	153	Loit

Project Nam Project No: DP Contact Prior Storag	8 Person: F	ea Garden 1259 Patrick Hea sky / fridge	ds / Jo	l el Cow	DP Or an	der No:	10	.t35			7	JΔch	LOV Stroc	·+					
		Sample		T .							Attn: J	acınta	a Hurst		<u> </u>	Chatswo	od NSW :	<i>0द्</i> र	
Sample O	Date Sampled	Туре	Lab ID	TRH	BT EX	"Met als	PCB s	PAH s	OCP	OPP	Analyte: CEC	EC	ESP	Da	e Receiv	67-2 ed: \3/		TCLP	Notes
Pit 1 / 0.1	6/3/13	s	1			1	-"	"	√	1	 					Ambient			
Pit 4 / 0.1	6/3/13	S	2	V	1	1	1	1	1	1				Co	ding: low				
it 13 / 0.1	6/3/13	s	3			1			~	1	 -			- Se	urityeint	CV TOKA	VNone		Combo 6
Pit 17 / 0.05	5/3/13	s	4			✓			✓	✓				-					
Pit 23 / 0.05- .1	5/3/13	S	5			1			1	✓									
rit 27 / 0.1	6/3/13	s	Ĺ			✓			V	1									
rit 37 /_0.1	5/3/13	s	7	V	V	✓	1	1	1	✓									combo 6
rit 39 / 0.1	6/3/13	S	8	/	~	/	1	1	/	✓		-							combo 6
it 41 / 0.1	6/3/13	S	9	V	1	1	✓	√	1	√						<u></u>			10mb06
4	6/3/13	S	10	✓	V	✓	V	✓	✓	1									igmbo 6
it 2 / 0.1	6/3/13	S	11								1	✓	1						(gireo O
it 2 / 0.3 QL (W)	6/3/13	S mg/L	12							-		✓							
QL = practical q - Metals to An ate relinquishe otal number of esults required AT (Circle):	alyse (Plea ed: 12 Marc	imit *As per ase circle): ch 2013	As Cd	Cr Cu P	b Zn F	lg Ni Otl	her		Please receipt Signat	sign ar of sam ure:	ples and	o ackr d return	nowledge n by fax	Q	Dougla Addres BOX 3 NSW 2	24 Hun	ers Pty ter Reg	Ltd ion Mail	Centre

Project Name: Tea Gardens..... To: Envirolab Services Pty Ltd..... Project No: 12 Ashley Street DP Contact Person: Patrick Heads / Joel Cowan.... CHATSWOOD NSW 2067 Prior Storage: esky / fridge / shelved (circle).... Ph: (02) 9910 6200..... Attn: Jacinta Hurst..... Sample Analytes Sample Type Date TRH Lab BT #Met PCB PAH OCP CEC EC OPP ESP TCLP Notes Sampled S-soil ID FΧ als s S W-water 13 1 Pit 6 /0.15 6/3/13 S 1 14 Pit 9 / 0.15 ✓ 6/3/13 S 1 Pit 9 / 0.4 6/3/13 S 15 16 / Pit 12 / 0.15 6/3/13 S Pit 15 / 0.5 ✓ ✓ 5/3/13 S FI 18 ✓ S Pit 17 / 0.05 5/3/13 1 5/3/13 S 19 Pit 17 / 0.4 ✓ Pit 22 / 0.1 S 20 5/3/13 ✓ ✓ Pit 22 / 0.4 2١ S 5/3/13 22 ✓ Pit 28 / 0.1 6/3/13 S 23 ✓ Pit 28 / 0.4 S 6/3/13 24 / 6/3/13 S Pit 31 / 0.1 PQL (W) mg/L PQL = practical quantitation limit *As per Laboratory Method (Detection Limit) SAMPLES RECEIVED Send results to: # - Metals to Analyse (Please circle): As Cd Cr Cu Pb Zn Hg Ni Other Please sign and date to acknowledge Douglas Partners Pty Ltd Date relinquished: 12 March 2013 receipt of samples and return by fax Address: **BOX 324 Hunter Region Mail Centre** Total number of samples in container: 30 Signature: Results required by: 19/3/13 NSW 2310 TAT (Circle): Standard 72 hr 48hr 24hr Date: 13/03 Lab Ref: 67240 Fax: (02) 4960 9601

Project Nan Project No: DP Contact Prior Storag	812 Person: Pa	a Gardens 259 atrick Hea ky / <mark>fridge</mark>	ds / Jo	[el Cowa	OP Ord an	der No:	1.97	- <i>!\$</i> -} 7		•	1: C P	2 Ashl HATS h: (02	ley Stree WOOD () 9910 6:	t NSW 200	2067	••••••	••••••••••••	· · · · · · · · · · · · · · · · · · ·	
_		Sample									Analyte	s							
Sample ID	Date Sampled	Type S-soil W-water	Lab ID	TRH	BT EX	"Met als	PCB s	PAH s	OCP	OPP	CEC	EC	ESP					TCLP	Notes
Pit 34 / 0.1	6/3/13	s	25								✓	✓	1						
Pit-34 / 0.3	6/3/13	S	26									1							
Pit 36 / 0.1	5/3/13	s	27							<u>-</u> .		1							
Pit 36 / 0.3	5/3/13	s	28								✓	✓	1						
Pit 41 / 0.1	6/3/13	s	29									✓							
Pit 41 / 0.3	6/3/13	s	30.								✓	✓	✓						
		<u> </u>																	
PQL (W)		mg/L				!													
PQL = practical quantitation limit *As per Laboratory Method (Detection Limit) # - Metals to Analyse (Please circle): As Cd Cr Cu Pb Zn Hg Ni Other Date relinquished: 12 March 2013							SAMPLES RECEIVED Please sign and date to acknowledge receipt of samples and return by fax Send results to: Douglas Partners Pty Ltd Address: BOX 324 Hunter Region Mail					Centre							
TAT (Circle): Standard 72 hr 48hr 24hr					Signature: NSW 2310 Date: 5/2 Lab Ref: 87240 Fax: (02) 4960 9601														

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
enquiries@envirolabservices.com.au
www.envirolabservices.com.au

SAMPLE RECEIPT ADVICE

Client:

Douglas Partners Newcastle ph: 4960 9600
Box 324 Hunter Region Mail Centre Fax: 4960 9601

Newcastle NSW 2310

Attention: Patrick Heads, Joel Cowan

Sample log in details:

Your reference: 81259, Tea Gardens

Envirolab Reference: **87240**Date received: 13/03/13
Date results expected to be reported: **21/03/13**

Samples received in appropriate condition for analysis:

No. of samples provided

Turnaround time requested:

Temperature on receipt

Cooling Method:

Sampling Date Provided:

YES

YES

Comments:

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples.

Contact details:

Please direct any queries to Aileen Hie or Jacinta Hurst

ph: 02 9910 6200 fax: 02 9910 6201

email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Newcastle
Attention	Joel Cowan

Sample Login Details	
Your reference	81259.01, Prop. North Shearwater Sub, Tea Gardens
Envirolab Reference	187303
Date Sample Received	15/03/2018
Date Instructions Received	15/03/2018
Date Results Expected to be Reported	22/03/2018

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	23 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	10.2
Cooling Method	Ice
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst		
Phone: 02 9910 6200	Phone: 02 9910 6200		
Fax: 02 9910 6201	Fax: 02 9910 6201		
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au		

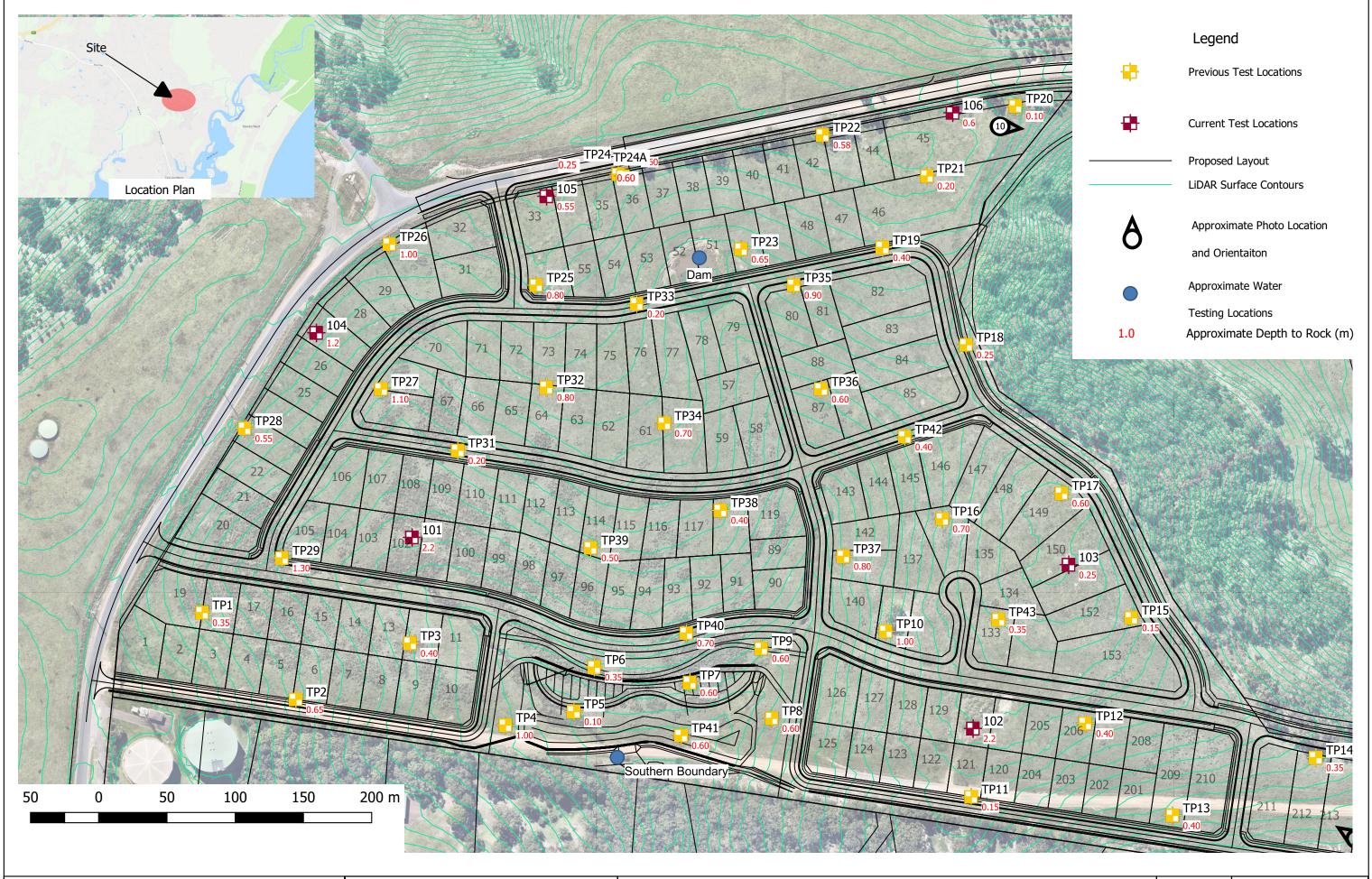
Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au

www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticidesin soil	Organophosphorus Pesticides	PCBsin Soil	Acid Extractable metalsin soil	Electrical Conductivity1:5 soil:water	ESP/CEC
101-0.5	✓	✓	✓	✓	✓	✓	✓		
102-1.0	✓	✓	✓	✓	✓	✓	✓		
107-0.4								✓	
201-0.05				✓	✓		✓	✓	
203-0.05				✓	✓		✓	✓	✓
203-0.2								✓	✓
205-0.05				✓	✓		✓	✓	
205-0.2								✓	
207-0.1								✓	
210-0.05				✓	✓		✓	✓	
210-0.25								✓	
211-0.2-0.6								✓	✓
213-0.2								✓	
303-0.05	✓	✓	✓	✓	✓	✓	✓	✓	✓
303-0.15								✓	√
304-0.05	✓	✓	✓	✓	✓	✓	✓	✓	✓
304-0.25								✓	✓
310-0.05				✓	✓		✓	✓	√
310-0.15								✓	
312-0.7-1.0								✓	✓
313-0.2								✓	
314-0.5-0.7								✓	

The 'V' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

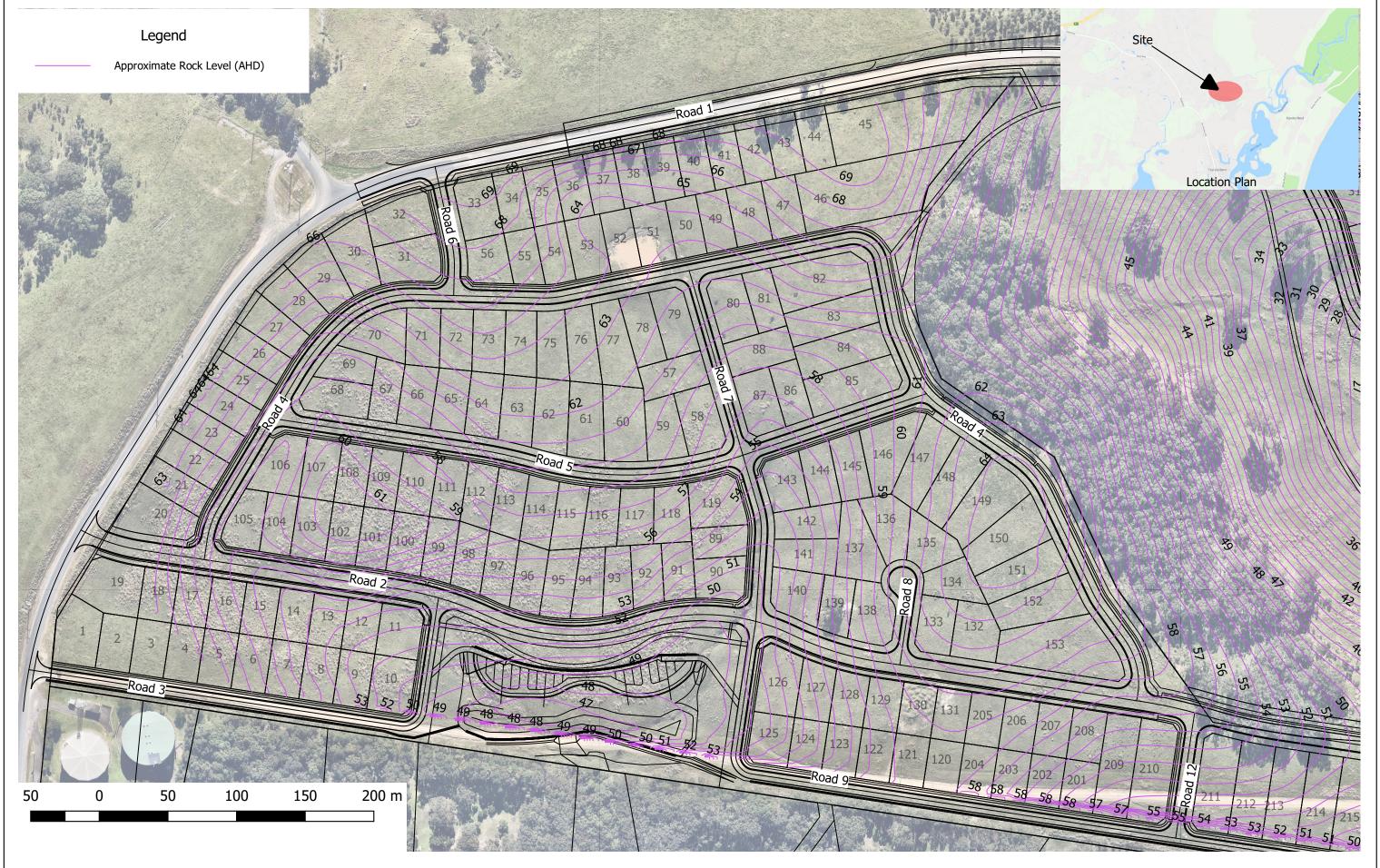

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Appendix E

Drawing 1 – Test Location Plan Drawing 2 – Roadway Designation



CLIENT:	Wolin Investments Pty Ltd		
OFFICE:	Newcastle	DRAWN BY: JRC	
SCALE:	1:2,000 @ A3	DATE: 04-05-2018	

TITLE: Test Location Plan
Proposed North Shearwater Residential Subdivision (Stage 1)
off Viney Creek Road, Tea Gardens

PROPOSAL:	81259.01		
DRAWING No:	1		
REVISION:	0		

CLIENT:	Wolin Investments Pty Ltd		
OFFICE:	Newcastle	DRAWN BY: JRC	
SCALE:	1:2,000 @ A3	DATE: 29-03-2018	

Roadway Designation and Approximate Rock Contour Levels
Proposed North Shearwater Residential Subdivision (Stage 1)
off Viney Creek Road, Tea Gardens

PROPOSAL:	81259.01
DRAWING No:	2
REVISION:	0